Loading…
Vegetal protein hydrolysates reduce the yield losses in off-season crops under combined heat and drought stress
To deal with the vagaries of climate change, it is essential to develop climate-resilient agricultural practices, which improve crop productivity, and ensure food security. The impacts of high temperature and water deficit stress conditions pose serious challenges to a sustainable crop production. S...
Saved in:
Published in: | Physiology and molecular biology of plants 2023-07, Vol.29 (7), p.1049-1059 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To deal with the vagaries of climate change, it is essential to develop climate-resilient agricultural practices, which improve crop productivity, and ensure food security. The impacts of high temperature and water deficit stress conditions pose serious challenges to a sustainable crop production. Several adaptation measures are practiced globally to address these challenges and among these altering the crop's typical growing season is one of the key management practices. Application of biostimulants and other growth hormones helps in compensating yield losses under abiotic stress significantly. Therefore, this study was conducted to evaluate the influence of vegetal protein hydrolysate based biostimulant to reduce the yield losses of off-season crops (soybean and chilli in summer and chickpea in early
Kharif
) when the temperature was higher than the regular season under water deficit stress conditions. The experiments were carried out with the foliar application of different protein hydrolysates (PHs) concentrations. The study revealed that the application of PHs significantly improved the membrane stability index, relative water content, total chlorophyll and proline content of leaves. Consequently, it led to an increase in the number of pods in soybean and chickpea, and fruits in chilli, leading to improved yields when plants were treated with the appropriate amount of PHs. Compared to untreated plants, PHs helped improve the efficiency of PS-II with significantly high photochemical efficiency (QYmax) even at higher excised leaf water loss or reduction in loss of relative water content. This study concluded that foliar application of PHs at 4, 2, and 6 ml L
−1
can be beneficial for soybean, chickpea and chilli, which exhibited 17, 30, and 25% yield improvement respectively, over the untreated plants under water deficit stress. It is suggested that the benefits of PHs can be realized in soybean, chickpea and chilli under high temperature and water deficit stress. Therefore, vegetal PHs may be able to assist farmers in arid regions for boosting their income by raising market value and decreasing production barriers during the off-season. |
---|---|
ISSN: | 0971-5894 0974-0430 |
DOI: | 10.1007/s12298-023-01334-4 |