Loading…
Tensile and Compression Strength Prediction and Validation in 3D-Printed Short-Fiber-Reinforced Polymers
In the current study, a methodology is validated for predicting the internal spatially varying strength properties in a single 3D-printed bead composed of 13%, by weight, carbon-fiber-filled acrylonitrile butadiene styrene. The presented method allows for the characterization of the spatially varyin...
Saved in:
Published in: | Polymers 2023-08, Vol.15 (17), p.3605 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the current study, a methodology is validated for predicting the internal spatially varying strength properties in a single 3D-printed bead composed of 13%, by weight, carbon-fiber-filled acrylonitrile butadiene styrene. The presented method allows for the characterization of the spatially varying microstructural behavior yielding a local anisotropic stiffness and strength that can be integrated in a finite element framework for a bulk estimate of the effective stiffness and strength. The modeling framework is presented with a focus on composite structures made from large area additive manufacturing (LAAM). LAAM is an extrusion-based process yielding components on the order of meters, with a typical raster size of 10 mm. The presented modeling methods are applicable to other short-fiber-reinforced polymer processing methods as well. The results provided indicate the modeling framework yields results for the effective strength and stiffness that align with experimental characterization to within ∼1% and ∼10% for the longitudinal compressive and tensile strength, respectively, and to within ∼3% and ∼50% for the longitudinal compressive and tensile stiffness, respectively. |
---|---|
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym15173605 |