Loading…
Enhancement of Non-Linear Deep Learning Model by Adjusting Confounding Variables for Bone Age Estimation in Pediatric Hand X-rays
In medicine, confounding variables in a generalized linear model are often adjusted; however, these variables have not yet been exploited in a non-linear deep learning model. Sex plays important role in bone age estimation, and non-linear deep learning model reported their performances comparable to...
Saved in:
Published in: | Journal of digital imaging 2023-10, Vol.36 (5), p.2003-2014 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In medicine, confounding variables in a generalized linear model are often adjusted; however, these variables have not yet been exploited in a non-linear deep learning model. Sex plays important role in bone age estimation, and non-linear deep learning model reported their performances comparable to human experts. Therefore, we investigate the properties of using confounding variables in a non-linear deep learning model for bone age estimation in pediatric hand X-rays. The RSNA Pediatric Bone Age Challenge (2017) dataset is used to train deep learning models. The RSNA test dataset is used for internal validation, and 227 pediatric hand X-ray images with bone age, chronological age, and sex information from Asan Medical Center (AMC) for external validation. U-Net based autoencoder, U-Net multi-task learning (MTL), and auxiliary-accelerated MTL (AA-MTL) models are chosen. Bone age estimations adjusted by input, output prediction, and without adjusting the confounding variables are compared. Additionally, ablation studies for model size, auxiliary task hierarchy, and multiple tasks are conducted. Correlation and Bland–Altman plots between ground truth and model-predicted bone ages are evaluated. Averaged saliency maps based on image registration are superimposed on representative images according to puberty stage. In the RSNA test dataset, adjusting by input shows the best performances regardless of model size, with mean average errors (MAEs) of 5.740, 5.478, and 5.434 months for the U-Net backbone, U-Net MTL, and AA-MTL models, respectively. However, in the AMC dataset, the AA-MTL model that adjusts the confounding variable by prediction shows the best performance with an MAE of 8.190 months, whereas the other models show the best performances by adjusting the confounding variables by input. Ablation studies of task hierarchy reveal no significant differences in the results of the RSNA dataset. However, predicting the confounding variable in the second encoder layer and estimating bone age in the bottleneck layer shows the best performance in the AMC dataset. Ablations studies of multiple tasks reveal that leveraging confounding variables plays an important role regardless of multiple tasks. To estimate bone age in pediatric X-rays, the clinical setting and balance between model size, task hierarchy, and confounding adjustment method play important roles in performance and generalizability; therefore, proper adjusting methods of confounding variables to trai |
---|---|
ISSN: | 1618-727X 0897-1889 1618-727X |
DOI: | 10.1007/s10278-023-00849-2 |