Loading…

MdNAC104 positively regulates apple cold tolerance via CBF-dependent and CBF-independent pathways

Low temperature is the main environmental factor affecting the yield, quality and geographical distribution of crops, which significantly restricts development of the fruit industry. The NAC (NAM, ATAF1/2 and CUC2) transcription factor (TF) family is involved in regulating plant cold tolerance, but...

Full description

Saved in:
Bibliographic Details
Published in:Plant biotechnology journal 2023-10, Vol.21 (10), p.2057-2073
Main Authors: Mei, Chuang, Yang, Jie, Mei, Quanlin, Jia, Dongfeng, Yan, Peng, Feng, Beibei, Mamat, Aisajan, Gong, Xiaoqing, Guan, Qingmei, Mao, Ke, Wang, Jixun, Ma, Fengwang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c404t-7f99cbdd99e07d124ef6cdabc94f25e89d7d44e2ba45cb995ef0fdda50b0365f3
cites cdi_FETCH-LOGICAL-c404t-7f99cbdd99e07d124ef6cdabc94f25e89d7d44e2ba45cb995ef0fdda50b0365f3
container_end_page 2073
container_issue 10
container_start_page 2057
container_title Plant biotechnology journal
container_volume 21
creator Mei, Chuang
Yang, Jie
Mei, Quanlin
Jia, Dongfeng
Yan, Peng
Feng, Beibei
Mamat, Aisajan
Gong, Xiaoqing
Guan, Qingmei
Mao, Ke
Wang, Jixun
Ma, Fengwang
description Low temperature is the main environmental factor affecting the yield, quality and geographical distribution of crops, which significantly restricts development of the fruit industry. The NAC (NAM, ATAF1/2 and CUC2) transcription factor (TF) family is involved in regulating plant cold tolerance, but the mechanisms underlying these regulatory processes remain unclear. Here, the NAC TF MdNAC104 played a positive role in modulating apple cold tolerance. Under cold stress, MdNAC104-overexpressing transgenic plants exhibited less ion leakage and lower ROS (reactive oxygen species) accumulation, but higher contents of osmoregulatory substances and activities of antioxidant enzymes. Transcriptional regulation analysis showed that MdNAC104 directly bound to the MdCBF1 and MdCBF3 promoters to promote expression. In addition, based on combined transcriptomic and metabolomic analyses, as well as promoter binding and transcriptional regulation analyses, we found that MdNAC104 stimulated the accumulation of anthocyanin under cold conditions by upregulating the expression of anthocyanin synthesis-related genes, including MdCHS-b, MdCHI-a, MdF3H-a and MdANS-b, and increased the activities of the antioxidant enzymes by promoting the expression of the antioxidant enzyme-encoding genes MdFSD2 and MdPRXR1.1. In conclusion, this study revealed the MdNAC104 regulatory mechanism of cold tolerance in apple via CBF-dependent and CBF-independent pathways.
doi_str_mv 10.1111/pbi.14112
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10502760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2832576749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-7f99cbdd99e07d124ef6cdabc94f25e89d7d44e2ba45cb995ef0fdda50b0365f3</originalsourceid><addsrcrecordid>eNpdkUtP3TAQha2KiveifwBFYlMWobbjR7yq4AraShQ2dG059gSMfONgJ7e6_x7z6KXtbGY08-nojA5Cnwg-JaW-jJ0_JYwQ-gHtEiZkLQWnW5uZsR20l_MDxpQILrbRTiObVvIW7yLz012fLQhm1Rizn_wKwrpKcDcHM0GuzDgGqGwMrppigGQGC9XKm2pxflk7GGFwMEyVGdzLxg_vu9FM97_NOh-gj70JGQ7f-j76dXlxu_heX918-7E4u6otw2yqZa-U7ZxTCrB0hDLohXWms4r1lEOrnHSMAe0M47ZTikOPe-cMxx1uBO-bffT1VXecuyU4WzwkE_SY_NKktY7G638vg7_Xd3GlCeaYSoGLwuc3hRQfZ8iTXvpsIQQzQJyzpm1DuRSSqYIe_4c-xDkN5b9CCdaSVrVNoU5eKZtizgn6jRuC9XNyuiSnX5Ir7NHf9jfkn6iaJ2ellS4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864818983</pqid></control><display><type>article</type><title>MdNAC104 positively regulates apple cold tolerance via CBF-dependent and CBF-independent pathways</title><source>Publicly Available Content Database</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><creator>Mei, Chuang ; Yang, Jie ; Mei, Quanlin ; Jia, Dongfeng ; Yan, Peng ; Feng, Beibei ; Mamat, Aisajan ; Gong, Xiaoqing ; Guan, Qingmei ; Mao, Ke ; Wang, Jixun ; Ma, Fengwang</creator><creatorcontrib>Mei, Chuang ; Yang, Jie ; Mei, Quanlin ; Jia, Dongfeng ; Yan, Peng ; Feng, Beibei ; Mamat, Aisajan ; Gong, Xiaoqing ; Guan, Qingmei ; Mao, Ke ; Wang, Jixun ; Ma, Fengwang</creatorcontrib><description>Low temperature is the main environmental factor affecting the yield, quality and geographical distribution of crops, which significantly restricts development of the fruit industry. The NAC (NAM, ATAF1/2 and CUC2) transcription factor (TF) family is involved in regulating plant cold tolerance, but the mechanisms underlying these regulatory processes remain unclear. Here, the NAC TF MdNAC104 played a positive role in modulating apple cold tolerance. Under cold stress, MdNAC104-overexpressing transgenic plants exhibited less ion leakage and lower ROS (reactive oxygen species) accumulation, but higher contents of osmoregulatory substances and activities of antioxidant enzymes. Transcriptional regulation analysis showed that MdNAC104 directly bound to the MdCBF1 and MdCBF3 promoters to promote expression. In addition, based on combined transcriptomic and metabolomic analyses, as well as promoter binding and transcriptional regulation analyses, we found that MdNAC104 stimulated the accumulation of anthocyanin under cold conditions by upregulating the expression of anthocyanin synthesis-related genes, including MdCHS-b, MdCHI-a, MdF3H-a and MdANS-b, and increased the activities of the antioxidant enzymes by promoting the expression of the antioxidant enzyme-encoding genes MdFSD2 and MdPRXR1.1. In conclusion, this study revealed the MdNAC104 regulatory mechanism of cold tolerance in apple via CBF-dependent and CBF-independent pathways.</description><identifier>ISSN: 1467-7644</identifier><identifier>ISSN: 1467-7652</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.14112</identifier><identifier>PMID: 37387580</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Accumulation ; Anthocyanins ; Antioxidants ; Apples ; Biosynthesis ; Cold ; Cold tolerance ; Drought ; Environmental factors ; Enzymes ; Flowers &amp; plants ; Gene expression ; Gene regulation ; Genes ; Geographical distribution ; Low temperature ; Metabolomics ; Osmoregulation ; Physiology ; Plant growth ; Proteins ; Reactive oxygen species ; Regulatory mechanisms (biology) ; Stress response ; Temperature tolerance ; Transcription factors ; Transcriptomics ; Transgenic plants</subject><ispartof>Plant biotechnology journal, 2023-10, Vol.21 (10), p.2057-2073</ispartof><rights>2023 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-7f99cbdd99e07d124ef6cdabc94f25e89d7d44e2ba45cb995ef0fdda50b0365f3</citedby><cites>FETCH-LOGICAL-c404t-7f99cbdd99e07d124ef6cdabc94f25e89d7d44e2ba45cb995ef0fdda50b0365f3</cites><orcidid>0000-0003-0608-2521</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2864818983/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2864818983?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37387580$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mei, Chuang</creatorcontrib><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Mei, Quanlin</creatorcontrib><creatorcontrib>Jia, Dongfeng</creatorcontrib><creatorcontrib>Yan, Peng</creatorcontrib><creatorcontrib>Feng, Beibei</creatorcontrib><creatorcontrib>Mamat, Aisajan</creatorcontrib><creatorcontrib>Gong, Xiaoqing</creatorcontrib><creatorcontrib>Guan, Qingmei</creatorcontrib><creatorcontrib>Mao, Ke</creatorcontrib><creatorcontrib>Wang, Jixun</creatorcontrib><creatorcontrib>Ma, Fengwang</creatorcontrib><title>MdNAC104 positively regulates apple cold tolerance via CBF-dependent and CBF-independent pathways</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Low temperature is the main environmental factor affecting the yield, quality and geographical distribution of crops, which significantly restricts development of the fruit industry. The NAC (NAM, ATAF1/2 and CUC2) transcription factor (TF) family is involved in regulating plant cold tolerance, but the mechanisms underlying these regulatory processes remain unclear. Here, the NAC TF MdNAC104 played a positive role in modulating apple cold tolerance. Under cold stress, MdNAC104-overexpressing transgenic plants exhibited less ion leakage and lower ROS (reactive oxygen species) accumulation, but higher contents of osmoregulatory substances and activities of antioxidant enzymes. Transcriptional regulation analysis showed that MdNAC104 directly bound to the MdCBF1 and MdCBF3 promoters to promote expression. In addition, based on combined transcriptomic and metabolomic analyses, as well as promoter binding and transcriptional regulation analyses, we found that MdNAC104 stimulated the accumulation of anthocyanin under cold conditions by upregulating the expression of anthocyanin synthesis-related genes, including MdCHS-b, MdCHI-a, MdF3H-a and MdANS-b, and increased the activities of the antioxidant enzymes by promoting the expression of the antioxidant enzyme-encoding genes MdFSD2 and MdPRXR1.1. In conclusion, this study revealed the MdNAC104 regulatory mechanism of cold tolerance in apple via CBF-dependent and CBF-independent pathways.</description><subject>Accumulation</subject><subject>Anthocyanins</subject><subject>Antioxidants</subject><subject>Apples</subject><subject>Biosynthesis</subject><subject>Cold</subject><subject>Cold tolerance</subject><subject>Drought</subject><subject>Environmental factors</subject><subject>Enzymes</subject><subject>Flowers &amp; plants</subject><subject>Gene expression</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Geographical distribution</subject><subject>Low temperature</subject><subject>Metabolomics</subject><subject>Osmoregulation</subject><subject>Physiology</subject><subject>Plant growth</subject><subject>Proteins</subject><subject>Reactive oxygen species</subject><subject>Regulatory mechanisms (biology)</subject><subject>Stress response</subject><subject>Temperature tolerance</subject><subject>Transcription factors</subject><subject>Transcriptomics</subject><subject>Transgenic plants</subject><issn>1467-7644</issn><issn>1467-7652</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkUtP3TAQha2KiveifwBFYlMWobbjR7yq4AraShQ2dG059gSMfONgJ7e6_x7z6KXtbGY08-nojA5Cnwg-JaW-jJ0_JYwQ-gHtEiZkLQWnW5uZsR20l_MDxpQILrbRTiObVvIW7yLz012fLQhm1Rizn_wKwrpKcDcHM0GuzDgGqGwMrppigGQGC9XKm2pxflk7GGFwMEyVGdzLxg_vu9FM97_NOh-gj70JGQ7f-j76dXlxu_heX918-7E4u6otw2yqZa-U7ZxTCrB0hDLohXWms4r1lEOrnHSMAe0M47ZTikOPe-cMxx1uBO-bffT1VXecuyU4WzwkE_SY_NKktY7G638vg7_Xd3GlCeaYSoGLwuc3hRQfZ8iTXvpsIQQzQJyzpm1DuRSSqYIe_4c-xDkN5b9CCdaSVrVNoU5eKZtizgn6jRuC9XNyuiSnX5Ir7NHf9jfkn6iaJ2ellS4</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Mei, Chuang</creator><creator>Yang, Jie</creator><creator>Mei, Quanlin</creator><creator>Jia, Dongfeng</creator><creator>Yan, Peng</creator><creator>Feng, Beibei</creator><creator>Mamat, Aisajan</creator><creator>Gong, Xiaoqing</creator><creator>Guan, Qingmei</creator><creator>Mao, Ke</creator><creator>Wang, Jixun</creator><creator>Ma, Fengwang</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0608-2521</orcidid></search><sort><creationdate>20231001</creationdate><title>MdNAC104 positively regulates apple cold tolerance via CBF-dependent and CBF-independent pathways</title><author>Mei, Chuang ; Yang, Jie ; Mei, Quanlin ; Jia, Dongfeng ; Yan, Peng ; Feng, Beibei ; Mamat, Aisajan ; Gong, Xiaoqing ; Guan, Qingmei ; Mao, Ke ; Wang, Jixun ; Ma, Fengwang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-7f99cbdd99e07d124ef6cdabc94f25e89d7d44e2ba45cb995ef0fdda50b0365f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accumulation</topic><topic>Anthocyanins</topic><topic>Antioxidants</topic><topic>Apples</topic><topic>Biosynthesis</topic><topic>Cold</topic><topic>Cold tolerance</topic><topic>Drought</topic><topic>Environmental factors</topic><topic>Enzymes</topic><topic>Flowers &amp; plants</topic><topic>Gene expression</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Geographical distribution</topic><topic>Low temperature</topic><topic>Metabolomics</topic><topic>Osmoregulation</topic><topic>Physiology</topic><topic>Plant growth</topic><topic>Proteins</topic><topic>Reactive oxygen species</topic><topic>Regulatory mechanisms (biology)</topic><topic>Stress response</topic><topic>Temperature tolerance</topic><topic>Transcription factors</topic><topic>Transcriptomics</topic><topic>Transgenic plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mei, Chuang</creatorcontrib><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Mei, Quanlin</creatorcontrib><creatorcontrib>Jia, Dongfeng</creatorcontrib><creatorcontrib>Yan, Peng</creatorcontrib><creatorcontrib>Feng, Beibei</creatorcontrib><creatorcontrib>Mamat, Aisajan</creatorcontrib><creatorcontrib>Gong, Xiaoqing</creatorcontrib><creatorcontrib>Guan, Qingmei</creatorcontrib><creatorcontrib>Mao, Ke</creatorcontrib><creatorcontrib>Wang, Jixun</creatorcontrib><creatorcontrib>Ma, Fengwang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mei, Chuang</au><au>Yang, Jie</au><au>Mei, Quanlin</au><au>Jia, Dongfeng</au><au>Yan, Peng</au><au>Feng, Beibei</au><au>Mamat, Aisajan</au><au>Gong, Xiaoqing</au><au>Guan, Qingmei</au><au>Mao, Ke</au><au>Wang, Jixun</au><au>Ma, Fengwang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MdNAC104 positively regulates apple cold tolerance via CBF-dependent and CBF-independent pathways</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>21</volume><issue>10</issue><spage>2057</spage><epage>2073</epage><pages>2057-2073</pages><issn>1467-7644</issn><issn>1467-7652</issn><eissn>1467-7652</eissn><abstract>Low temperature is the main environmental factor affecting the yield, quality and geographical distribution of crops, which significantly restricts development of the fruit industry. The NAC (NAM, ATAF1/2 and CUC2) transcription factor (TF) family is involved in regulating plant cold tolerance, but the mechanisms underlying these regulatory processes remain unclear. Here, the NAC TF MdNAC104 played a positive role in modulating apple cold tolerance. Under cold stress, MdNAC104-overexpressing transgenic plants exhibited less ion leakage and lower ROS (reactive oxygen species) accumulation, but higher contents of osmoregulatory substances and activities of antioxidant enzymes. Transcriptional regulation analysis showed that MdNAC104 directly bound to the MdCBF1 and MdCBF3 promoters to promote expression. In addition, based on combined transcriptomic and metabolomic analyses, as well as promoter binding and transcriptional regulation analyses, we found that MdNAC104 stimulated the accumulation of anthocyanin under cold conditions by upregulating the expression of anthocyanin synthesis-related genes, including MdCHS-b, MdCHI-a, MdF3H-a and MdANS-b, and increased the activities of the antioxidant enzymes by promoting the expression of the antioxidant enzyme-encoding genes MdFSD2 and MdPRXR1.1. In conclusion, this study revealed the MdNAC104 regulatory mechanism of cold tolerance in apple via CBF-dependent and CBF-independent pathways.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>37387580</pmid><doi>10.1111/pbi.14112</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0608-2521</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1467-7644
ispartof Plant biotechnology journal, 2023-10, Vol.21 (10), p.2057-2073
issn 1467-7644
1467-7652
1467-7652
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10502760
source Publicly Available Content Database; Wiley Online Library (Open Access Collection); PubMed Central
subjects Accumulation
Anthocyanins
Antioxidants
Apples
Biosynthesis
Cold
Cold tolerance
Drought
Environmental factors
Enzymes
Flowers & plants
Gene expression
Gene regulation
Genes
Geographical distribution
Low temperature
Metabolomics
Osmoregulation
Physiology
Plant growth
Proteins
Reactive oxygen species
Regulatory mechanisms (biology)
Stress response
Temperature tolerance
Transcription factors
Transcriptomics
Transgenic plants
title MdNAC104 positively regulates apple cold tolerance via CBF-dependent and CBF-independent pathways
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A58%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MdNAC104%20positively%20regulates%20apple%20cold%20tolerance%20via%20CBF-dependent%20and%20CBF-independent%20pathways&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Mei,%20Chuang&rft.date=2023-10-01&rft.volume=21&rft.issue=10&rft.spage=2057&rft.epage=2073&rft.pages=2057-2073&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.14112&rft_dat=%3Cproquest_pubme%3E2832576749%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-7f99cbdd99e07d124ef6cdabc94f25e89d7d44e2ba45cb995ef0fdda50b0365f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2864818983&rft_id=info:pmid/37387580&rfr_iscdi=true