Loading…
Maintenance of turgor by rapid sealing of puncture wounds in leaf epidermal cells
When leaf epidermal cells are puncture wounded with a glass microcapillary tip, a small droplet of fluid is discharged and then evaporates, leaving a solid residue on the cell surface. For puncture wounds of about 3.5 micrometers in diameter, this process is complete within 2 to 3 seconds. A second...
Saved in:
Published in: | Plant physiology (Bethesda) 1991-11, Vol.97 (3), p.907-912 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | When leaf epidermal cells are puncture wounded with a glass microcapillary tip, a small droplet of fluid is discharged and then evaporates, leaving a solid residue on the cell surface. For puncture wounds of about 3.5 micrometers in diameter, this process is complete within 2 to 3 seconds. A second puncture wound also exhibits a similar discharge, indicating the persistence of some turgor pressure within the cell, despite damage to the cell wall. Direct measurement of turgor on the large epidermal cells of Tradescantia virginiana L. demonstrated that turgor was substantially maintained (91-96%) after puncture wounding. Anatomical and histochemical evidence suggests that the damaged portion of the cell wall was sealed with an amorphous plug of material comprised of pectinaceous polysaccharides. Rapid sealing of puncture wounds and the maintenance of turgor in epidermal cells may be an important functional component of plant adaptation to physical damage such as that caused by insect feeding |
---|---|
ISSN: | 0032-0889 1532-2548 |
DOI: | 10.1104/pp.97.3.907 |