Loading…
Catalysis of serine oligopeptidases is controlled by a gating filter mechanism
Proteases have a variety of strategies for selecting substrates in order to prevent uncontrolled protein degradation. A recent crystal structure determination of prolyl oligopeptidase has suggested a way for substrate selection involving an unclosed seven‐bladed β‐propeller domain. We have engineere...
Saved in:
Published in: | EMBO reports 2000-09, Vol.1 (3), p.277-281 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Proteases have a variety of strategies for selecting substrates in order to prevent uncontrolled protein degradation. A recent crystal structure determination of prolyl oligopeptidase has suggested a way for substrate selection involving an unclosed seven‐bladed β‐propeller domain. We have engineered a disulfide bond between the first and seventh blades of the propeller, which resulted in the loss of enzymatic activity. These results provided direct evidence for a novel strategy of regulation in which oscillating propeller blades act as a gating filter during catalysis, letting small peptide substrates into the active site while excluding large proteins to prevent accidental proteolysis. |
---|---|
ISSN: | 1469-221X 1469-3178 |
DOI: | 10.1093/embo-reports/kvd048 |