Loading…
Benchmarking DFT and Supervised Machine Learning: An Organic Semiconducting Polymer Investigation
Using a training set consisting of twenty-two well-known semiconducting organic polymers, we studied the ability of a simple linear regression supervised machine learning algorithm to accurately predict the bandgap (BG) and ionization potential (IP) of new polymers. We show that using the PBE or PW9...
Saved in:
Published in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2024-02, Vol.128 (4), p.709-715 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Using a training set consisting of twenty-two well-known semiconducting organic polymers, we studied the ability of a simple linear regression supervised machine learning algorithm to accurately predict the bandgap (BG) and ionization potential (IP) of new polymers. We show that using the PBE or PW91 exchange–correlation functionals and this simple linear regression, calculated BGs and IPs can be obtained with average percent errors of less than 3 and 4%, respectively. We then apply this method to predict the BG and IP of a group of new polymers composed of monomers used in the training set and their derivatives in AABB and ABAB orientations. |
---|---|
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/acs.jpca.3c04905 |