Loading…
Benchmarking DFT and Supervised Machine Learning: An Organic Semiconducting Polymer Investigation
Using a training set consisting of twenty-two well-known semiconducting organic polymers, we studied the ability of a simple linear regression supervised machine learning algorithm to accurately predict the bandgap (BG) and ionization potential (IP) of new polymers. We show that using the PBE or PW9...
Saved in:
Published in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2024-02, Vol.128 (4), p.709-715 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a387t-7348a8e776f60aca4bd60cf6fa5cdb5d8d9552aab86e40598b70da260534e3603 |
container_end_page | 715 |
container_issue | 4 |
container_start_page | 709 |
container_title | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
container_volume | 128 |
creator | Stoltz, Kyle R. Borunda, Mario F. |
description | Using a training set consisting of twenty-two well-known semiconducting organic polymers, we studied the ability of a simple linear regression supervised machine learning algorithm to accurately predict the bandgap (BG) and ionization potential (IP) of new polymers. We show that using the PBE or PW91 exchange–correlation functionals and this simple linear regression, calculated BGs and IPs can be obtained with average percent errors of less than 3 and 4%, respectively. We then apply this method to predict the BG and IP of a group of new polymers composed of monomers used in the training set and their derivatives in AABB and ABAB orientations. |
doi_str_mv | 10.1021/acs.jpca.3c04905 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10839824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917863041</sourcerecordid><originalsourceid>FETCH-LOGICAL-a387t-7348a8e776f60aca4bd60cf6fa5cdb5d8d9552aab86e40598b70da260534e3603</originalsourceid><addsrcrecordid>eNp1kc1v1DAQxS1ERUvhzgnlyIEsYzt2HC6oFAqVtipSy9maOM6uS2IvdrJS_3u87FLRQ08eye-9-fgR8obCggKjH9Ckxd3G4IIbqBoQz8gJFQxKwah4nmtQTSkkb47Jy5TuAIByVr0gx1wxSYHCCcHP1pv1iPGX86viy8Vtgb4rbuaNjVuXbFdcoVk7b4ulxeiz5mNx5ovruELvTHFjR2eC72Yz7ew_wnA_2lhc-q1Nk1vh5IJ_RY56HJJ9fXhPyc-Lr7fn38vl9bfL87NliVzVU1nzSqGydS17CWiwajsJppc9CtO1olNdIwRDbJW0FYhGtTV0yCQIXlkugZ-ST_vczdyOtjPWTxEHvYkub3evAzr9-Me7tV6Frc5X4o1iVU54d0iI4fecN9CjS8YOA3ob5qRZQ2slOVQ0S2EvNTGkFG3_0IeC3qHRGY3eodEHNNny9v_5Hgz_WGTB-73grzXM0edzPZ33B5JFnFc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917863041</pqid></control><display><type>article</type><title>Benchmarking DFT and Supervised Machine Learning: An Organic Semiconducting Polymer Investigation</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Stoltz, Kyle R. ; Borunda, Mario F.</creator><creatorcontrib>Stoltz, Kyle R. ; Borunda, Mario F.</creatorcontrib><description>Using a training set consisting of twenty-two well-known semiconducting organic polymers, we studied the ability of a simple linear regression supervised machine learning algorithm to accurately predict the bandgap (BG) and ionization potential (IP) of new polymers. We show that using the PBE or PW91 exchange–correlation functionals and this simple linear regression, calculated BGs and IPs can be obtained with average percent errors of less than 3 and 4%, respectively. We then apply this method to predict the BG and IP of a group of new polymers composed of monomers used in the training set and their derivatives in AABB and ABAB orientations.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.3c04905</identifier><identifier>PMID: 38261010</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2024-02, Vol.128 (4), p.709-715</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a387t-7348a8e776f60aca4bd60cf6fa5cdb5d8d9552aab86e40598b70da260534e3603</cites><orcidid>0000-0001-5037-2679</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38261010$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stoltz, Kyle R.</creatorcontrib><creatorcontrib>Borunda, Mario F.</creatorcontrib><title>Benchmarking DFT and Supervised Machine Learning: An Organic Semiconducting Polymer Investigation</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Using a training set consisting of twenty-two well-known semiconducting organic polymers, we studied the ability of a simple linear regression supervised machine learning algorithm to accurately predict the bandgap (BG) and ionization potential (IP) of new polymers. We show that using the PBE or PW91 exchange–correlation functionals and this simple linear regression, calculated BGs and IPs can be obtained with average percent errors of less than 3 and 4%, respectively. We then apply this method to predict the BG and IP of a group of new polymers composed of monomers used in the training set and their derivatives in AABB and ABAB orientations.</description><subject>A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kc1v1DAQxS1ERUvhzgnlyIEsYzt2HC6oFAqVtipSy9maOM6uS2IvdrJS_3u87FLRQ08eye-9-fgR8obCggKjH9Ckxd3G4IIbqBoQz8gJFQxKwah4nmtQTSkkb47Jy5TuAIByVr0gx1wxSYHCCcHP1pv1iPGX86viy8Vtgb4rbuaNjVuXbFdcoVk7b4ulxeiz5mNx5ovruELvTHFjR2eC72Yz7ew_wnA_2lhc-q1Nk1vh5IJ_RY56HJJ9fXhPyc-Lr7fn38vl9bfL87NliVzVU1nzSqGydS17CWiwajsJppc9CtO1olNdIwRDbJW0FYhGtTV0yCQIXlkugZ-ST_vczdyOtjPWTxEHvYkub3evAzr9-Me7tV6Frc5X4o1iVU54d0iI4fecN9CjS8YOA3ob5qRZQ2slOVQ0S2EvNTGkFG3_0IeC3qHRGY3eodEHNNny9v_5Hgz_WGTB-73grzXM0edzPZ33B5JFnFc</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Stoltz, Kyle R.</creator><creator>Borunda, Mario F.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5037-2679</orcidid></search><sort><creationdate>20240201</creationdate><title>Benchmarking DFT and Supervised Machine Learning: An Organic Semiconducting Polymer Investigation</title><author>Stoltz, Kyle R. ; Borunda, Mario F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a387t-7348a8e776f60aca4bd60cf6fa5cdb5d8d9552aab86e40598b70da260534e3603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stoltz, Kyle R.</creatorcontrib><creatorcontrib>Borunda, Mario F.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stoltz, Kyle R.</au><au>Borunda, Mario F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benchmarking DFT and Supervised Machine Learning: An Organic Semiconducting Polymer Investigation</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>128</volume><issue>4</issue><spage>709</spage><epage>715</epage><pages>709-715</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Using a training set consisting of twenty-two well-known semiconducting organic polymers, we studied the ability of a simple linear regression supervised machine learning algorithm to accurately predict the bandgap (BG) and ionization potential (IP) of new polymers. We show that using the PBE or PW91 exchange–correlation functionals and this simple linear regression, calculated BGs and IPs can be obtained with average percent errors of less than 3 and 4%, respectively. We then apply this method to predict the BG and IP of a group of new polymers composed of monomers used in the training set and their derivatives in AABB and ABAB orientations.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38261010</pmid><doi>10.1021/acs.jpca.3c04905</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5037-2679</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-5639 |
ispartof | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2024-02, Vol.128 (4), p.709-715 |
issn | 1089-5639 1520-5215 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10839824 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters |
title | Benchmarking DFT and Supervised Machine Learning: An Organic Semiconducting Polymer Investigation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benchmarking%20DFT%20and%20Supervised%20Machine%20Learning:%20An%20Organic%20Semiconducting%20Polymer%20Investigation&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Stoltz,%20Kyle%20R.&rft.date=2024-02-01&rft.volume=128&rft.issue=4&rft.spage=709&rft.epage=715&rft.pages=709-715&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.3c04905&rft_dat=%3Cproquest_pubme%3E2917863041%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a387t-7348a8e776f60aca4bd60cf6fa5cdb5d8d9552aab86e40598b70da260534e3603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2917863041&rft_id=info:pmid/38261010&rfr_iscdi=true |