Loading…

Benchmarking DFT and Supervised Machine Learning: An Organic Semiconducting Polymer Investigation

Using a training set consisting of twenty-two well-known semiconducting organic polymers, we studied the ability of a simple linear regression supervised machine learning algorithm to accurately predict the bandgap (BG) and ionization potential (IP) of new polymers. We show that using the PBE or PW9...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2024-02, Vol.128 (4), p.709-715
Main Authors: Stoltz, Kyle R., Borunda, Mario F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a387t-7348a8e776f60aca4bd60cf6fa5cdb5d8d9552aab86e40598b70da260534e3603
container_end_page 715
container_issue 4
container_start_page 709
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 128
creator Stoltz, Kyle R.
Borunda, Mario F.
description Using a training set consisting of twenty-two well-known semiconducting organic polymers, we studied the ability of a simple linear regression supervised machine learning algorithm to accurately predict the bandgap (BG) and ionization potential (IP) of new polymers. We show that using the PBE or PW91 exchange–correlation functionals and this simple linear regression, calculated BGs and IPs can be obtained with average percent errors of less than 3 and 4%, respectively. We then apply this method to predict the BG and IP of a group of new polymers composed of monomers used in the training set and their derivatives in AABB and ABAB orientations.
doi_str_mv 10.1021/acs.jpca.3c04905
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10839824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917863041</sourcerecordid><originalsourceid>FETCH-LOGICAL-a387t-7348a8e776f60aca4bd60cf6fa5cdb5d8d9552aab86e40598b70da260534e3603</originalsourceid><addsrcrecordid>eNp1kc1v1DAQxS1ERUvhzgnlyIEsYzt2HC6oFAqVtipSy9maOM6uS2IvdrJS_3u87FLRQ08eye-9-fgR8obCggKjH9Ckxd3G4IIbqBoQz8gJFQxKwah4nmtQTSkkb47Jy5TuAIByVr0gx1wxSYHCCcHP1pv1iPGX86viy8Vtgb4rbuaNjVuXbFdcoVk7b4ulxeiz5mNx5ovruELvTHFjR2eC72Yz7ew_wnA_2lhc-q1Nk1vh5IJ_RY56HJJ9fXhPyc-Lr7fn38vl9bfL87NliVzVU1nzSqGydS17CWiwajsJppc9CtO1olNdIwRDbJW0FYhGtTV0yCQIXlkugZ-ST_vczdyOtjPWTxEHvYkub3evAzr9-Me7tV6Frc5X4o1iVU54d0iI4fecN9CjS8YOA3ob5qRZQ2slOVQ0S2EvNTGkFG3_0IeC3qHRGY3eodEHNNny9v_5Hgz_WGTB-73grzXM0edzPZ33B5JFnFc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917863041</pqid></control><display><type>article</type><title>Benchmarking DFT and Supervised Machine Learning: An Organic Semiconducting Polymer Investigation</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Stoltz, Kyle R. ; Borunda, Mario F.</creator><creatorcontrib>Stoltz, Kyle R. ; Borunda, Mario F.</creatorcontrib><description>Using a training set consisting of twenty-two well-known semiconducting organic polymers, we studied the ability of a simple linear regression supervised machine learning algorithm to accurately predict the bandgap (BG) and ionization potential (IP) of new polymers. We show that using the PBE or PW91 exchange–correlation functionals and this simple linear regression, calculated BGs and IPs can be obtained with average percent errors of less than 3 and 4%, respectively. We then apply this method to predict the BG and IP of a group of new polymers composed of monomers used in the training set and their derivatives in AABB and ABAB orientations.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.3c04905</identifier><identifier>PMID: 38261010</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2024-02, Vol.128 (4), p.709-715</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a387t-7348a8e776f60aca4bd60cf6fa5cdb5d8d9552aab86e40598b70da260534e3603</cites><orcidid>0000-0001-5037-2679</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38261010$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stoltz, Kyle R.</creatorcontrib><creatorcontrib>Borunda, Mario F.</creatorcontrib><title>Benchmarking DFT and Supervised Machine Learning: An Organic Semiconducting Polymer Investigation</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Using a training set consisting of twenty-two well-known semiconducting organic polymers, we studied the ability of a simple linear regression supervised machine learning algorithm to accurately predict the bandgap (BG) and ionization potential (IP) of new polymers. We show that using the PBE or PW91 exchange–correlation functionals and this simple linear regression, calculated BGs and IPs can be obtained with average percent errors of less than 3 and 4%, respectively. We then apply this method to predict the BG and IP of a group of new polymers composed of monomers used in the training set and their derivatives in AABB and ABAB orientations.</description><subject>A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kc1v1DAQxS1ERUvhzgnlyIEsYzt2HC6oFAqVtipSy9maOM6uS2IvdrJS_3u87FLRQ08eye-9-fgR8obCggKjH9Ckxd3G4IIbqBoQz8gJFQxKwah4nmtQTSkkb47Jy5TuAIByVr0gx1wxSYHCCcHP1pv1iPGX86viy8Vtgb4rbuaNjVuXbFdcoVk7b4ulxeiz5mNx5ovruELvTHFjR2eC72Yz7ew_wnA_2lhc-q1Nk1vh5IJ_RY56HJJ9fXhPyc-Lr7fn38vl9bfL87NliVzVU1nzSqGydS17CWiwajsJppc9CtO1olNdIwRDbJW0FYhGtTV0yCQIXlkugZ-ST_vczdyOtjPWTxEHvYkub3evAzr9-Me7tV6Frc5X4o1iVU54d0iI4fecN9CjS8YOA3ob5qRZQ2slOVQ0S2EvNTGkFG3_0IeC3qHRGY3eodEHNNny9v_5Hgz_WGTB-73grzXM0edzPZ33B5JFnFc</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Stoltz, Kyle R.</creator><creator>Borunda, Mario F.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5037-2679</orcidid></search><sort><creationdate>20240201</creationdate><title>Benchmarking DFT and Supervised Machine Learning: An Organic Semiconducting Polymer Investigation</title><author>Stoltz, Kyle R. ; Borunda, Mario F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a387t-7348a8e776f60aca4bd60cf6fa5cdb5d8d9552aab86e40598b70da260534e3603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stoltz, Kyle R.</creatorcontrib><creatorcontrib>Borunda, Mario F.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stoltz, Kyle R.</au><au>Borunda, Mario F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benchmarking DFT and Supervised Machine Learning: An Organic Semiconducting Polymer Investigation</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>128</volume><issue>4</issue><spage>709</spage><epage>715</epage><pages>709-715</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Using a training set consisting of twenty-two well-known semiconducting organic polymers, we studied the ability of a simple linear regression supervised machine learning algorithm to accurately predict the bandgap (BG) and ionization potential (IP) of new polymers. We show that using the PBE or PW91 exchange–correlation functionals and this simple linear regression, calculated BGs and IPs can be obtained with average percent errors of less than 3 and 4%, respectively. We then apply this method to predict the BG and IP of a group of new polymers composed of monomers used in the training set and their derivatives in AABB and ABAB orientations.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38261010</pmid><doi>10.1021/acs.jpca.3c04905</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5037-2679</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2024-02, Vol.128 (4), p.709-715
issn 1089-5639
1520-5215
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10839824
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters
title Benchmarking DFT and Supervised Machine Learning: An Organic Semiconducting Polymer Investigation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benchmarking%20DFT%20and%20Supervised%20Machine%20Learning:%20An%20Organic%20Semiconducting%20Polymer%20Investigation&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Stoltz,%20Kyle%20R.&rft.date=2024-02-01&rft.volume=128&rft.issue=4&rft.spage=709&rft.epage=715&rft.pages=709-715&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.3c04905&rft_dat=%3Cproquest_pubme%3E2917863041%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a387t-7348a8e776f60aca4bd60cf6fa5cdb5d8d9552aab86e40598b70da260534e3603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2917863041&rft_id=info:pmid/38261010&rfr_iscdi=true