Loading…

Unsupervised item response theory models for assessing sample heterogeneity in patient-reported outcomes measures

Purpose Unsupervised item-response theory (IRT) models such as polytomous IRT based on recursive partitioning (IRTrees) and mixture IRT (MixIRT) models can be used to assess differential item functioning (DIF) in patient-reported outcome measures (PROMs) when the covariates associated with DIF are u...

Full description

Saved in:
Bibliographic Details
Published in:Quality of life research 2024-03, Vol.33 (3), p.853-864
Main Authors: Sajobi, Tolulope T., Sanusi, Ridwan A., Mayo, Nancy E., Sawatzky, Richard, Kongsgaard Nielsen, Lene, Sebille, Veronique, Liu, Juxin, Bohm, Eric, Awosoga, Oluwagbohunmi, Norris, Colleen M., Wilton, Stephen B., James, Matthew T., Lix, Lisa M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose Unsupervised item-response theory (IRT) models such as polytomous IRT based on recursive partitioning (IRTrees) and mixture IRT (MixIRT) models can be used to assess differential item functioning (DIF) in patient-reported outcome measures (PROMs) when the covariates associated with DIF are unknown a priori. This study examines the consistency of results for IRTrees and MixIRT models. Methods Data were from 4478 individuals in the Alberta Provincial Project on Outcome Assessment in Coronary Heart Disease registry who received cardiac angiography in Alberta, Canada, and completed the Hospital Anxiety and Depression Scale (HADS) depression subscale items. The partial credit model (PCM) based on recursive partitioning (PCTree) and mixture PCM (MixPCM) were used to identify covariates associated with differential response patterns to HADS depression subscale items. Model covariates included demographic and clinical characteristics. Results The median (interquartile range) age was 64.5(15.7) years, and 3522(78.5%) patients were male. The PCTree identified 4 terminal nodes (subgroups) defined by smoking status, age, and body mass index. A 3-class PCM fits the data well. The MixPCM latent classes were defined by age, disease indication, smoking status, comorbid diabetes, congestive heart failure, and chronic obstructive pulmonary disease. Conclusion PCTree and MixPCM were not consistent in detecting covariates associated with differential interpretations of PROM items. Future research will use computer simulations to assess these models’ Type I error and statistical power for identifying covariates associated with DIF.
ISSN:0962-9343
1573-2649
DOI:10.1007/s11136-023-03560-5