Loading…
Developing a novel algorithm for comparing cluster patterns in networks on journal articles during and after COVID-19: Bibliometric analysis
Cluster analysis is vital in bibliometrics for deciphering large sets of academic data. However, no prior research has employed a cluster-pattern algorithm to assess the similarities and differences between 2 clusters in networks. The study goals are 2-fold: to create a cluster-pattern comparison al...
Saved in:
Published in: | Medicine (Baltimore) 2024-03, Vol.103 (12), p.e37530-e37530 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cluster analysis is vital in bibliometrics for deciphering large sets of academic data. However, no prior research has employed a cluster-pattern algorithm to assess the similarities and differences between 2 clusters in networks. The study goals are 2-fold: to create a cluster-pattern comparison algorithm tailored for bibliometric analysis and to apply this algorithm in presenting clusters of countries, institutes, departments, authors (CIDA), and keywords on journal articles during and after COVID-19.
We analyzed 9499 and 5943 articles from the Journal of Medicine (Baltimore) during and after COVID-19 in 2020 to 2021 and 2022 to 2023, sourced from the Web of Science (WoS) Core Collection. Follower-leading clustering algorithm (FLCA) was compared to other 8 counterparts in cluster validation and effectiveness and a cluster-pattern-comparison algorithm (CPCA) was developed using the similarity coefficient, collaborative maps, and thematic maps to evaluate CIDA cluster patterns. The similarity coefficients were categorized as identical, similar, dissimilar, or different for values above 0.7, between 0.5 and 0.7, between 0.3 and 0.5, and below 0.3, respectively.
Both stages displayed similar trends in annual publications and average citations, although these trends are decreasing. The peak publication year was 2020. Similarity coefficients of cluster patterns in these 2 stages for CIDA entities and keywords were 0.73, 0.35, 0.80, 0.02, and 0.83, respectively, suggesting the existence of identical patterns (>0.70) in countries, departments, and keywords plus, but dissimilar ( |
---|---|
ISSN: | 0025-7974 1536-5964 |
DOI: | 10.1097/MD.0000000000037530 |