Loading…

Comparative pharmacokinetics of tyrosine kinase inhibitor, lapatinib, in dogs and cats following single oral administration

Lapatinib is an orally administered tyrosine kinase inhibitor used to treat human epidermal growth factor receptor 2 (HER2) -overexpressing breast cancers in humans. Recently, the potential of lapatinib treatment against canine urothelial carcinoma or feline mammary tumor was investigated. However,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Veterinary Medical Science 2024, Vol.86(3), pp.317-321
Main Authors: YU, Ting-Wei, YAMAMOTO, Haru, MORITA, Shohei, FUKUSHIMA, Ryuji, ELBADAWY, Mohamed, USUI, Tatsuya, SASAKI, Kazuaki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Lapatinib is an orally administered tyrosine kinase inhibitor used to treat human epidermal growth factor receptor 2 (HER2) -overexpressing breast cancers in humans. Recently, the potential of lapatinib treatment against canine urothelial carcinoma or feline mammary tumor was investigated. However, the pharmacokinetic studies of lapatinib in dogs and cats are not well-defined. In the present study, the pharmacokinetic characteristics of lapatinib in both cats and dogs after a single oral administration at a dose of 25 mg/kg were compared with each other. Lapatinib was administered orally to four female laboratory cats and four female beagle dogs. Blood samples were collected over time, and the plasma lapatinib concentrations were analyzed by HPLC. Following a single dose of 25 mg/kg, the averaged maximum plasma concentration (Cmax) of lapatinib in cats was 0.47 μg/mL and achieved at 7.1 hr post-administration, while the Cmax in dogs was 1.63 μg/mL and achieved at 9.5 hr post-administration. The mean elimination half-life was 6.5 hr in cats and 7.8 hr in dogs. The average area under the plasma concentration-time curve of dogs (37.2 hr·μg/mL) was significantly higher than that of cats (7.97 hr·μg/mL). These results exhibited slow absorptions of lapatinib in both animals after oral administration. The Cmax observed in cats was significantly lower and the half-life was shorter than those observed in dogs. Based on these results, a larger dose or shorter dosing intervals might be recommended in cats to achieve similar plasma concentration as dogs.
ISSN:0916-7250
1347-7439
DOI:10.1292/jvms.23-0448