Loading…

The microtubule-depolymerizing agent ansamitocin P3 programs dendritic cells toward enhanced anti-tumor immunity

In addition to direct tumor cell cytotoxicity, chemotherapy can mediate tumor reduction through immune modulation of the tumor microenvironment to promote anti-tumor immunity. Mature dendritic cells (DCs) play key roles in priming robust immune responses in tumor-bearing hosts. Here, we screened a p...

Full description

Saved in:
Bibliographic Details
Published in:Cancer Immunology, Immunotherapy Immunotherapy, 2014-09, Vol.63 (9), p.925-938
Main Authors: Martin, Kea, Müller, Philipp, Schreiner, Jens, Prince, Spasenija Savic, Lardinois, Didier, Heinzelmann-Schwarz, Viola A., Thommen, Daniela S., Zippelius, Alfred
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In addition to direct tumor cell cytotoxicity, chemotherapy can mediate tumor reduction through immune modulation of the tumor microenvironment to promote anti-tumor immunity. Mature dendritic cells (DCs) play key roles in priming robust immune responses in tumor-bearing hosts. Here, we screened a panel of 21 anticancer agents with defined molecular targets for their ability to induce direct maturation of DCs. We identified ansamitocin P3, a microtubule-depolymerizing agent, as a potent inducer of phenotypic and functional maturation of DCs. Exposure of both murine spleen-derived and human monocyte-derived DCs to ansamitocin P3 triggered up-regulation of maturation markers and production of pro-inflammatory cytokines, resulting in an enhanced T cell stimulatory capacity. Local administration of ansamitocin P3 induced maturation of skin Langerhans cells in vivo and promoted antigen uptake and extensive homing of tumor-resident DCs to tumor-draining lymph nodes. When used as an adjuvant in a specific vaccination approach, ansamitocin P3 dramatically increased activation of antigen-specific T cells. Finally, we demonstrate that ansamitocin P3, due to its immunomodulatory properties, acts in synergy with antibody-mediated blockade of the T cell inhibitory receptors PD-1 and CTLA-4. The combination treatment was most effective and induced durable growth inhibition of established tumors. Mechanistically, we observed a reduced regulatory T cell frequency and improved T cell effector function at the tumor site. Taken together, our study unravels an immune-based anti-tumor mechanism exploited by microtubule-depolymerizing agents, including ansamitocin P3, and paves the way for future clinical trials combining this class of agents with immunotherapy.
ISSN:0340-7004
1432-0851
DOI:10.1007/s00262-014-1565-4