Loading…

Syntrophic Interactions Ameliorate Arsenic Inhibition of Solvent-Dechlorinating Dehalococcoides mccartyi

Interactions and nutrient exchanges among members of microbial communities are important for understanding functional relationships in environmental microbiology. We can begin to elucidate the nature of these complex systems by taking a bottom-up approach utilizing simplified, but representative, co...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2023-09, Vol.57 (38), p.14237-14247
Main Authors: Gushgari-Doyle, Sara, Olivares, Christopher I., Sun, Mohan, Alvarez-Cohen, Lisa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Interactions and nutrient exchanges among members of microbial communities are important for understanding functional relationships in environmental microbiology. We can begin to elucidate the nature of these complex systems by taking a bottom-up approach utilizing simplified, but representative, community members. Here, we assess the effects of a toxic stress event, the addition of arsenite (As­(III)), on a syntrophic co-culture containing lactate-fermenting Desulfovibrio vulgaris Hildenborough and solvent-dechlorinating Dehalococcoides mccartyi strain 195. Arsenic and trichloroethene (TCE) are two highly prevalent groundwater contaminants in the United States, and the presence of bioavailable arsenic is of particular concern at remediation sites in which reductive dechlorination has been employed. While we previously showed that low concentrations of arsenite (As­(III)) inhibit the keystone TCE-reducing microorganism, D. mccartyi, this study reports the utilization of physiological analysis, transcriptomics, and metabolomics to assess the effects of arsenic on the metabolisms, gene expression, and nutrient exchanges in the described co-culture. It was found that the presence of D. vulgaris ameliorated arsenic stress on D. mccartyi, improving TCE dechlorination under arsenic-contaminated conditions. Nutrient and amino acid export by D. vulgaris may be a stress-ameliorating exchange in this syntrophic co-culture under arsenic stress, based on upregulation of transporters and increased extracellular nutrients like sarcosine and ornithine. These results broaden our knowledge of microbial community interactions and will support the further development and implementation of robust bioremediation strategies at multi-contaminant sites.
ISSN:0013-936X
1520-5851
1520-5851
DOI:10.1021/acs.est.3c03807