Loading…
RBT1, a novel transcriptional co-activator, binds the second subunit of replication protein A
Replication Protein A (RPA) is required for DNA recombination, repair and replication in all eukaryotes. RPA participation in these pathways is mediated by single-stranded DNA binding and protein interactions. We herein identify a novel protein, Replication Protein Binding Trans-Activator (RBT1), in...
Saved in:
Published in: | Nucleic acids research 2000-09, Vol.28 (18), p.3478-3485 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Replication Protein A (RPA) is required for DNA recombination, repair and replication in all eukaryotes. RPA participation in these pathways is mediated by single-stranded DNA binding and protein interactions. We herein identify a novel protein, Replication Protein Binding Trans-Activator (RBT1), in a yeast two-hybrid assay employing the second subunit of human RPA (RPA32) as bait. RBT1-RPA32 binding was confirmed by glutathione S:-transferase pull-down and co-immunoprecipitation. Fluorescence microscopy indicates that green fluorescence protein-tagged RBT1 is localized to the nucleus in vivo. RBT1 mRNA expression, determined by semi-quantitative RT-PCR, is significantly higher in cancer cell lines MCF-7, ZR-75, SaOS-2 and H661, compared to the cell lines normal non-immortalized human mammary epithelial cells and normal non-immortalized human bronchial epithelial cells. Further, yeast and mammalian one-hybrid analysis shows that RBT1 is a strong transcriptional co-activator. Interestingly, mammalian transactivation data is indicative of significant variance between cell lines; the GAL4-RBT1 fusion protein has significantly higher transcriptional activity in human cancer cells compared to human normal primary non-immortalized epithelial cells. We propose that RBT1 is a novel transcriptional co-activator that interacts with RPA, and has significantly higher activity in transformed cells. |
---|---|
ISSN: | 1362-4962 0305-1048 1362-4962 |
DOI: | 10.1093/nar/28.18.3478 |