Loading…
Cell-shape-dependent modulation of p52(PAI-1) gene expression involves a secondary response pathway
Expression of the rat p52(PAI-1) gene is positively regulated by agents that influence cellular microfilament organization and/or cell-to-substrate adhesion [e.g. cytochalasin D (CD) and sodium n-butyrate (NaB)] [Higgins, Chaudhari and Ryan (1991) Biochem. J. 273, 651-658; Higgins, Ryan and Providen...
Saved in:
Published in: | Biochemical journal 1995-03, Vol.306 ( Pt 2) (2), p.497-504 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Expression of the rat p52(PAI-1) gene is positively regulated by agents that influence cellular microfilament organization and/or cell-to-substrate adhesion [e.g. cytochalasin D (CD) and sodium n-butyrate (NaB)] [Higgins, Chaudhari and Ryan (1991) Biochem. J. 273, 651-658; Higgins, Ryan and Providence (1994) J. Cell. Physiol. 159, 187-195]. As shape-responsive genes may be subject to inducer-specific controls, the biochemical mechanisms underlying the shape-dependent pathway of p52(PAI-1) gene regulation were examined in v-ras-transformed rat kidney (KNRK) cells. NaB and/or CD effectively stimulated p52(PAI-1) run-off transcription and augmented de novo p52(PAI-1) mRNA and protein synthesis in KNRK cells; induction at both the mRNA and protein levels was inhibited by actinomycin D. Pretreatment with cycloheximide (CX) markedly attenuated NaB- and/or CD-stimulated p52(PAI-1) expression. CX alone, however, induced low levels of p52(PAI-1) mRNA; increased p52(PAI-1) protein synthesis was evident after release of KNRK cells from CX blockade. Such CX-mediated induction was also sensitive to actinomycin D. Full stimulation of p52(PAI-1) expression in KNRK cells in response to the shape modulators NaB and/or CD involves transcriptional activation of the p52(PAI-1) gene, requires de novo RNA synthesis and occurs through a secondary-response (i.e. protein-synthesis-dependent) pathway. |
---|---|
ISSN: | 0264-6021 1470-8728 |
DOI: | 10.1042/bj3060497 |