Loading…
Efficient near-infrared organic light-emitting diodes with emission from spin doublet excitons
The development of luminescent organic radicals has resulted in materials with excellent optical properties for near-infrared emission. Applications of light generation in this range span from bioimaging to surveillance. Although the unpaired electron arrangements of radicals enable efficient radiat...
Saved in:
Published in: | Nature photonics 2024, Vol.18 (9), p.905-912 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The development of luminescent organic radicals has resulted in materials with excellent optical properties for near-infrared emission. Applications of light generation in this range span from bioimaging to surveillance. Although the unpaired electron arrangements of radicals enable efficient radiative transitions within the doublet-spin manifold in organic light-emitting diodes, their performance is limited by non-radiative pathways introduced in electroluminescence. Here we present a host–guest design for organic light-emitting diodes that exploits energy transfer with up to 9.6% external quantum efficiency for 800 nm emission. The tris(2,4,6-trichlorophenyl)methyl-triphenyl-amine radical guest is energy-matched to the triplet state in a charge-transporting anthracene-derivative host. We show from optical spectroscopy and quantum-chemical modelling that reversible host–guest triplet–doublet energy transfer allows efficient harvesting of host triplet excitons.
Exploiting the energy transfer between the host triplet states and spin doublet exciton states of a radical organic emitter enables near-infrared organic light-emitting diodes with an external quantum efficiency up to 9.6% at an emission wavelength of 800 nm. |
---|---|
ISSN: | 1749-4885 1749-4893 |
DOI: | 10.1038/s41566-024-01458-3 |