Loading…

Determination of volatile organic compounds (VOCs) in indoor work environments by solid phase microextraction-gas chromatography-mass spectrometry

Volatile organic compounds (VOCs) are continuously emitted into the atmosphere from natural and anthropogenic sources and rapidly spread from the atmosphere to different environments. A large group of VOCs has been included in the class of air pollutants; therefore, their determination and monitorin...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science and pollution research international 2024-08, Vol.31 (40), p.52804-52814
Main Authors: Marchesiello, Wadir Mario Valentino, Spadaccino, Giuseppina, Usman, Muhammad, Nardiello, Donatella, Quinto, Maurizio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Volatile organic compounds (VOCs) are continuously emitted into the atmosphere from natural and anthropogenic sources and rapidly spread from the atmosphere to different environments. A large group of VOCs has been included in the class of air pollutants; therefore, their determination and monitoring using reliable and sensitive analytical methods represents a key aspect of health risk assessment. In this work, an untargeted approach is proposed for the evaluation of the exposure to volatile organic compounds of workers in an engine manufacturing plant by GC–MS measurements, coupled with solid-phase microextraction (SPME). The analytical procedure was optimized in terms of SPME fiber, adsorption time, desorption time, and temperature gradient of the chromatographic run. For the microextraction of VOCs, the SPME fibers were exposed to the air in two different zones of the manufacturing factory, i.e., in the mixing painting chamber and the engine painting area. Moreover, the sampling was carried out with the painting system active and running (system on) and with the painting system switched off (system off). Overall, 212 compounds were identified, but only 17 were always present in both zones (mixing painting chamber and engine painting area), regardless of system conditions (on or off). Finally, a semi-quantitative evaluation was performed considering the peak area value of the potentially most toxic compounds by multivariate data analyses.
ISSN:1614-7499
0944-1344
1614-7499
DOI:10.1007/s11356-024-34715-7