Loading…
Biochemical characterization of I-CmoeI reveals that this H-N-H homing endonuclease shares functional similarities with H-N-H colicins
Endonuclease assays of the H-N-H proteins encoded by two group I introns in the Chlamydomonas moewusii chloroplast psbA gene revealed that the CmpsbA.1 intron specifies a site-specific DNA endonuclease, designated I-CMOE:I. Like most previously reported intron-encoded endonucleases, I-CMOE:I generat...
Saved in:
Published in: | Nucleic acids research 2000-11, Vol.28 (22), p.4566-4572 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Endonuclease assays of the H-N-H proteins encoded by two group I introns in the Chlamydomonas moewusii chloroplast psbA gene revealed that the CmpsbA.1 intron specifies a site-specific DNA endonuclease, designated I-CMOE:I. Like most previously reported intron-encoded endonucleases, I-CMOE:I generates a double-strand break near the insertion site of its encoding intron, leaving 3' extensions of 4 nt. This enzyme was purified from Escherichia coli as a fusion protein with a His tag at its N-terminus. The recombinant protein (rI-CMOE:I) requires a divalent alkaline earth cation for DNA cleavage (Mg(2+) > Ca(2+) > Sr(2+) > Ba(2+)). It also requires a metal cofactor for DNA binding, a property shared with H-N-H colicins but not with the homing endonucleases characterized to date. rI-CMOE:I binds its recognition sequence as a monomer, as revealed by gel retardation assays. K:(m) and k(cat) values of 100 +/- 40 pM and 0.26 +/- 0.04 min(-1), respectively, were determined. Replacement of the first histidine of the H-N-H motif by an alanine residue abolishes both rI-CMOE:I activity and binding to its substrate. We propose that this conserved histidine residue plays a role in binding the metal cofactor and that such binding induces a structural modification of the enzyme which is required for DNA recognition. |
---|---|
ISSN: | 1362-4962 0305-1048 1362-4962 |
DOI: | 10.1093/nar/28.22.4566 |