Loading…

Improving light availability and creating high-frequency light–dark cycles in raceway ponds through vortex-induced vibrations for microalgae cultivation: a fluid dynamic study

Limited light availability due to insufficient vertical mixing strongly reduces the applicability of raceway ponds (RWPs). To overcome this and create light–dark (L/D) cycles for enhanced biomass production through improved vertical mixing, vortex-induced vibration (VIV) system was implemented by th...

Full description

Saved in:
Bibliographic Details
Published in:Bioprocess and biosystems engineering 2024-11, Vol.47 (11), p.1863-1874
Main Authors: Akca, Mehmet Sadik, Kinaci, Omer Kemal, Inanc, Bulent
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Limited light availability due to insufficient vertical mixing strongly reduces the applicability of raceway ponds (RWPs). To overcome this and create light–dark (L/D) cycles for enhanced biomass production through improved vertical mixing, vortex-induced vibration (VIV) system was implemented by the authors in a previous study to an existing pilot-scale RWP. In this study, experimental characterization of fluid dynamics for VIV-implemented RWP is carried out. Particle image velocimetry (PIV) technique is applied to visualize the flow. The extents of the vertical mixing due to VIV and the characteristics of L/D cycles were examined by tracking selected particles. Pond depth was hypothetically divided into three zones, namely dark, light Iimited and light saturated for detailed analysis of cell trajectories. It has been observed that VIV cylinder oscillation can efficiently facilitate the transfer of cells from light-limited to light-saturated zones. Among the cells that were tracked, 44% initially at dark zone entered the light-limited zone and 100% of initially at light-limited zone entered the light-saturated zone. 33% of all tracked cells experienced high-frequency L/D cycles with an average frequency of 35.69 s −1 and 0.49 light fraction. The impact of VIV was not discernible in the deeper sections of the pond, due to constrained oscillation amplitudes. Our findings suggest that the approximately 20% increase in biomass production reported in our previous study can be attributed to the synergistic effects of enhanced L/D cycle frequencies and improved light availability resulting from the transfer of cells from dark to light-limited zones. To further enhance the effectiveness of VIV, design improvements were developed. It was concluded that light availability could be significantly improved with the presented method for more effective use of RWPs.
ISSN:1615-7591
1615-7605
1615-7605
DOI:10.1007/s00449-024-03074-5