Loading…
Evaluation of deep learning estimation of whole heart anatomy from automated cardiovascular magnetic resonance short- and long-axis analyses in UK Biobank
Abstract Aims Standard methods of heart chamber volume estimation in cardiovascular magnetic resonance (CMR) typically utilize simple geometric formulae based on a limited number of slices. We aimed to evaluate whether an automated deep learning neural network prediction of 3D anatomy of all four ch...
Saved in:
Published in: | European heart journal cardiovascular imaging 2024-09, Vol.25 (10), p.1374-1383 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Aims
Standard methods of heart chamber volume estimation in cardiovascular magnetic resonance (CMR) typically utilize simple geometric formulae based on a limited number of slices. We aimed to evaluate whether an automated deep learning neural network prediction of 3D anatomy of all four chambers would show stronger associations with cardiovascular risk factors and disease than standard volume estimation methods in the UK Biobank.
Methods and results
A deep learning network was adapted to predict 3D segmentations of left and right ventricles (LV, RV) and atria (LA, RA) at ∼1 mm isotropic resolution from CMR short- and long-axis 2D segmentations obtained from a fully automated machine learning pipeline in 4723 individuals with cardiovascular disease (CVD) and 5733 without in the UK Biobank. Relationships between volumes at end-diastole (ED) and end-systole (ES) and risk/disease factors were quantified using univariate, multivariate, and logistic regression analyses. Strength of association between deep learning volumes and standard volumes was compared using the area under the receiving operator characteristic curve (AUC). Univariate and multivariate associations between deep learning volumes and most risk and disease factors were stronger than for standard volumes (higher R2 and more significant P-values), particularly for sex, age, and body mass index. AUCs for all logistic regressions were higher for deep learning volumes than standard volumes (P < 0.001 for all four chambers at ED and ES).
Conclusion
Neural network reconstructions of whole heart volumes had significantly stronger associations with CVD and risk factors than standard volume estimation methods in an automatic processing pipeline.
Graphical Abstract
Graphical Abstract |
---|---|
ISSN: | 2047-2404 2047-2412 2047-2412 |
DOI: | 10.1093/ehjci/jeae123 |