Loading…
NAD-specific isocitrate dehydrogenase from bovine heart. Interaction with Ca2+ chelators
The activity of NAD-specific isocitrate dehydrogenase was inhibited by EDTA, EGTA and other nitrogen-containing polycarboxylate Ca2+ chelators in the absence and in the presence of ADP by a mechanism that could not be attributed solely to the removal of free Ca2+. Carboxymethyltartronate (2-oxapropa...
Saved in:
Published in: | Biochemical journal 1985-08, Vol.229 (3), p.817-822 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The activity of NAD-specific isocitrate dehydrogenase was inhibited by EDTA, EGTA and other nitrogen-containing polycarboxylate Ca2+ chelators in the absence and in the presence of ADP by a mechanism that could not be attributed solely to the removal of free Ca2+. Carboxymethyltartronate (2-oxapropane-1,1,3-tricarboxylate), an oxygen ether polycarboxylate chelator, did not inhibit when ADP was absent. The activation by ADP, a positive effector of the enzyme, decreased with increasing concentration of carboxymethyltartronate, paralleling the removal of free Ca2+ by this chelator. The following were found when free Ca2+ was decreased to negligible concentrations (5-50 nM) with carboxymethyltartronate. (1) Free Ca2+ enhanced, but was not absolutely required for, activation by ADP. (2) Activation of enzyme activity by magnesium citrate neither required nor was increased by Ca2+ when ADP was absent. However, the potentiation of citrate activation by ADP was facilitated by free Ca2+. (3) The reversal of NADPH inhibition of enzyme activity by ADP did not absolutely require Ca2+, but it was enhanced by free Ca2+. (4) The inhibition of enzyme activity by NADH was not reversed by ADP either with or without Ca2+. |
---|---|
ISSN: | 0264-6021 1470-8728 |
DOI: | 10.1042/bj2290817 |