Loading…
Introductory Tutorials for Simulating Protein Dynamics with GROMACS
Atomistic molecular dynamics (MD) simulations have become an indispensable tool for investigating the structure, dynamics, and energetics of biomolecules. Continual optimization of software algorithms and hardware has enabled investigators to access biologically relevant time scales in feasible amou...
Saved in:
Published in: | The journal of physical chemistry. B 2024-10, Vol.128 (39), p.9418-9435 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Atomistic molecular dynamics (MD) simulations have become an indispensable tool for investigating the structure, dynamics, and energetics of biomolecules. Continual optimization of software algorithms and hardware has enabled investigators to access biologically relevant time scales in feasible amounts of computing time. Given the widespread use and utility of MD simulations, there is considerable interest in learning essential skills in performing them. Here, we present a set of introductory tutorials for performing MD simulations of proteins in the popular, open-source GROMACS package. Three exercises are detailed, including simulating a single protein, setting up a protein complex, and performing umbrella sampling simulations to model the unfolding of a short polypeptide. Essential features and input settings are illustrated throughout. The purpose of these tutorials is to provide new users with a general understanding of foundational workflows, from which they can design their own simulations. |
---|---|
ISSN: | 1520-6106 1520-5207 1520-5207 |
DOI: | 10.1021/acs.jpcb.4c04901 |