Loading…

Role for NLRP3 inflammasome-mediated, Caspase1-dependent response in glaucomatous trabecular meshwork cell death and regulation of aqueous humor outflow

Acute ocular hypertension (AOH) is the defining feature of acute glaucoma. The mechanical stress and excessive production of reactive oxygen species (ROS) during episodes can directly or indirectly damage the trabecular meshwork (TM). Despite its significance, a clear understanding of its pathogenes...

Full description

Saved in:
Bibliographic Details
Published in:Heliyon 2024-10, Vol.10 (19), p.e38258, Article e38258
Main Authors: Feng, Xiaomei, Chen, Zhao, Cheng, Wenjun, Liu, Changgeng, Liu, Qian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2948-c9ae99ad533f18f11e7068e9fdf832fa3d9dfb724bfa94de0287ad0242b591b93
container_end_page
container_issue 19
container_start_page e38258
container_title Heliyon
container_volume 10
creator Feng, Xiaomei
Chen, Zhao
Cheng, Wenjun
Liu, Changgeng
Liu, Qian
description Acute ocular hypertension (AOH) is the defining feature of acute glaucoma. The mechanical stress and excessive production of reactive oxygen species (ROS) during episodes can directly or indirectly damage the trabecular meshwork (TM). Despite its significance, a clear understanding of its pathogenesis and an effective therapeutic target remain lacking in acute glaucoma. In the present study, we explored the potential molecular mechanisms underlying TM cell death following oxidative damage and AOH. The use of NAC/VX-765 as a potential pharmaceutical intervention for reducing intraocular pressure (IOP) was discussed. The levels of NLRP3 and caspase-1 were compared between normal and glaucomatous TM samples. An in vitro oxidative damage model and an AOH rat model were used to investigate the potential molecular mechanism behind TM cell death. The ROS scavenger N-acetyl-L-cysteine (NAC) and caspase-1 inhibitor VX-765 were used to counteract TM damage. Elevated levels of NLRP3 and caspase-1 were observed in patients with acute glaucoma. H2O2 exposure decreased the viability of human trabecular meshwork (HTM) cells and increased intracellular ROS levels. Both Gene and protein expressions of NLRP3, caspase-1, GSDMD-N, and IL-1β were notably upregulated in H2O2-induced HTM cells and the rodent AOH model. Both NAC and VX-765 demonstrated protective effects against TM injury by inhibiting pyroptosis. The IOP-lowering effects of NAC and VX-765 persisted for 7 days. Our findings indicate that the classical pyroptosis pathway, NLRP3/caspase-1/IL-1β, plays a key role in acute glaucomatous TM injury. Targeting pyroptosis provides novel therapeutic avenues for treating AOH-induced irreversible TM injury. This provides not only a promising therapeutic target for glaucoma but also introduces a new approach to intervention.
doi_str_mv 10.1016/j.heliyon.2024.e38258
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11481635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2405844024142892</els_id><sourcerecordid>3117619167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2948-c9ae99ad533f18f11e7068e9fdf832fa3d9dfb724bfa94de0287ad0242b591b93</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEolXpTwD5yIEsdpwP-4TQqnxIK0AVnK1JPN54SexgJ636T_i5ONqllBOcPNLMO55n5s2y54xuGGX168Omx8HeebcpaFFukIuiEo-y86KkVS7Kkj5-EJ9llzEeKKWsErVs-NPsjMuS1aIQ59nPaz8gMT6QT7vrL5xYZwYYR4h-xHxEbWFG_YpsIU4QkeUaJ3Qa3UwCxsm7iElC9gMsnR9h9kskc4AWu2WAQEaM_a0P30mHw0A0wtwTcDpp9yk_W--INwR-LLgK-2VMc_hlNoO_fZY9MTBEvDy9F9m3d1dftx_y3ef3H7dvd3lXyFLknQSUEnTFuWHCMIYNrQVKo43ghQGupTZtU5StAVlqpIVoQKelFW0lWSv5Rfbm2Hda2sTbJbQAg5qCHSHcKQ9W_Z1xtld7f6MYKwWreZU6vDx1CD6RxFmNNq7A4FYsxVlVptU3nP5HKWtqJlndpNLqWNoFH2NAcz8So2o1gTqokwnUagJ1NEHSvXjIc6_6ffI_wJi2emMxqNhZdF26dcBuVtrbf3zxC8P0yos</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117619167</pqid></control><display><type>article</type><title>Role for NLRP3 inflammasome-mediated, Caspase1-dependent response in glaucomatous trabecular meshwork cell death and regulation of aqueous humor outflow</title><source>Elsevier ScienceDirect Journals</source><source>PubMed Central</source><creator>Feng, Xiaomei ; Chen, Zhao ; Cheng, Wenjun ; Liu, Changgeng ; Liu, Qian</creator><creatorcontrib>Feng, Xiaomei ; Chen, Zhao ; Cheng, Wenjun ; Liu, Changgeng ; Liu, Qian</creatorcontrib><description>Acute ocular hypertension (AOH) is the defining feature of acute glaucoma. The mechanical stress and excessive production of reactive oxygen species (ROS) during episodes can directly or indirectly damage the trabecular meshwork (TM). Despite its significance, a clear understanding of its pathogenesis and an effective therapeutic target remain lacking in acute glaucoma. In the present study, we explored the potential molecular mechanisms underlying TM cell death following oxidative damage and AOH. The use of NAC/VX-765 as a potential pharmaceutical intervention for reducing intraocular pressure (IOP) was discussed. The levels of NLRP3 and caspase-1 were compared between normal and glaucomatous TM samples. An in vitro oxidative damage model and an AOH rat model were used to investigate the potential molecular mechanism behind TM cell death. The ROS scavenger N-acetyl-L-cysteine (NAC) and caspase-1 inhibitor VX-765 were used to counteract TM damage. Elevated levels of NLRP3 and caspase-1 were observed in patients with acute glaucoma. H2O2 exposure decreased the viability of human trabecular meshwork (HTM) cells and increased intracellular ROS levels. Both Gene and protein expressions of NLRP3, caspase-1, GSDMD-N, and IL-1β were notably upregulated in H2O2-induced HTM cells and the rodent AOH model. Both NAC and VX-765 demonstrated protective effects against TM injury by inhibiting pyroptosis. The IOP-lowering effects of NAC and VX-765 persisted for 7 days. Our findings indicate that the classical pyroptosis pathway, NLRP3/caspase-1/IL-1β, plays a key role in acute glaucomatous TM injury. Targeting pyroptosis provides novel therapeutic avenues for treating AOH-induced irreversible TM injury. This provides not only a promising therapeutic target for glaucoma but also introduces a new approach to intervention.</description><identifier>ISSN: 2405-8440</identifier><identifier>EISSN: 2405-8440</identifier><identifier>DOI: 10.1016/j.heliyon.2024.e38258</identifier><identifier>PMID: 39416828</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>acetylcysteine ; animal models ; caspase-1 ; genes ; Glaucoma ; Human trabecular meshwork cell ; humans ; hypertension ; mechanical stress ; NLRP3 ; pathogenesis ; Pyroptosis ; reactive oxygen species ; rodents ; ROS ; therapeutics ; viability</subject><ispartof>Heliyon, 2024-10, Vol.10 (19), p.e38258, Article e38258</ispartof><rights>2024 The Authors</rights><rights>2024 The Authors.</rights><rights>2024 The Authors 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2948-c9ae99ad533f18f11e7068e9fdf832fa3d9dfb724bfa94de0287ad0242b591b93</cites><orcidid>0009-0006-6484-0000</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481635/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2405844024142892$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3536,27901,27902,45756,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39416828$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, Xiaomei</creatorcontrib><creatorcontrib>Chen, Zhao</creatorcontrib><creatorcontrib>Cheng, Wenjun</creatorcontrib><creatorcontrib>Liu, Changgeng</creatorcontrib><creatorcontrib>Liu, Qian</creatorcontrib><title>Role for NLRP3 inflammasome-mediated, Caspase1-dependent response in glaucomatous trabecular meshwork cell death and regulation of aqueous humor outflow</title><title>Heliyon</title><addtitle>Heliyon</addtitle><description>Acute ocular hypertension (AOH) is the defining feature of acute glaucoma. The mechanical stress and excessive production of reactive oxygen species (ROS) during episodes can directly or indirectly damage the trabecular meshwork (TM). Despite its significance, a clear understanding of its pathogenesis and an effective therapeutic target remain lacking in acute glaucoma. In the present study, we explored the potential molecular mechanisms underlying TM cell death following oxidative damage and AOH. The use of NAC/VX-765 as a potential pharmaceutical intervention for reducing intraocular pressure (IOP) was discussed. The levels of NLRP3 and caspase-1 were compared between normal and glaucomatous TM samples. An in vitro oxidative damage model and an AOH rat model were used to investigate the potential molecular mechanism behind TM cell death. The ROS scavenger N-acetyl-L-cysteine (NAC) and caspase-1 inhibitor VX-765 were used to counteract TM damage. Elevated levels of NLRP3 and caspase-1 were observed in patients with acute glaucoma. H2O2 exposure decreased the viability of human trabecular meshwork (HTM) cells and increased intracellular ROS levels. Both Gene and protein expressions of NLRP3, caspase-1, GSDMD-N, and IL-1β were notably upregulated in H2O2-induced HTM cells and the rodent AOH model. Both NAC and VX-765 demonstrated protective effects against TM injury by inhibiting pyroptosis. The IOP-lowering effects of NAC and VX-765 persisted for 7 days. Our findings indicate that the classical pyroptosis pathway, NLRP3/caspase-1/IL-1β, plays a key role in acute glaucomatous TM injury. Targeting pyroptosis provides novel therapeutic avenues for treating AOH-induced irreversible TM injury. This provides not only a promising therapeutic target for glaucoma but also introduces a new approach to intervention.</description><subject>acetylcysteine</subject><subject>animal models</subject><subject>caspase-1</subject><subject>genes</subject><subject>Glaucoma</subject><subject>Human trabecular meshwork cell</subject><subject>humans</subject><subject>hypertension</subject><subject>mechanical stress</subject><subject>NLRP3</subject><subject>pathogenesis</subject><subject>Pyroptosis</subject><subject>reactive oxygen species</subject><subject>rodents</subject><subject>ROS</subject><subject>therapeutics</subject><subject>viability</subject><issn>2405-8440</issn><issn>2405-8440</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkk1v1DAQhiMEolXpTwD5yIEsdpwP-4TQqnxIK0AVnK1JPN54SexgJ636T_i5ONqllBOcPNLMO55n5s2y54xuGGX168Omx8HeebcpaFFukIuiEo-y86KkVS7Kkj5-EJ9llzEeKKWsErVs-NPsjMuS1aIQ59nPaz8gMT6QT7vrL5xYZwYYR4h-xHxEbWFG_YpsIU4QkeUaJ3Qa3UwCxsm7iElC9gMsnR9h9kskc4AWu2WAQEaM_a0P30mHw0A0wtwTcDpp9yk_W--INwR-LLgK-2VMc_hlNoO_fZY9MTBEvDy9F9m3d1dftx_y3ef3H7dvd3lXyFLknQSUEnTFuWHCMIYNrQVKo43ghQGupTZtU5StAVlqpIVoQKelFW0lWSv5Rfbm2Hda2sTbJbQAg5qCHSHcKQ9W_Z1xtld7f6MYKwWreZU6vDx1CD6RxFmNNq7A4FYsxVlVptU3nP5HKWtqJlndpNLqWNoFH2NAcz8So2o1gTqokwnUagJ1NEHSvXjIc6_6ffI_wJi2emMxqNhZdF26dcBuVtrbf3zxC8P0yos</recordid><startdate>20241015</startdate><enddate>20241015</enddate><creator>Feng, Xiaomei</creator><creator>Chen, Zhao</creator><creator>Cheng, Wenjun</creator><creator>Liu, Changgeng</creator><creator>Liu, Qian</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0006-6484-0000</orcidid></search><sort><creationdate>20241015</creationdate><title>Role for NLRP3 inflammasome-mediated, Caspase1-dependent response in glaucomatous trabecular meshwork cell death and regulation of aqueous humor outflow</title><author>Feng, Xiaomei ; Chen, Zhao ; Cheng, Wenjun ; Liu, Changgeng ; Liu, Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2948-c9ae99ad533f18f11e7068e9fdf832fa3d9dfb724bfa94de0287ad0242b591b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>acetylcysteine</topic><topic>animal models</topic><topic>caspase-1</topic><topic>genes</topic><topic>Glaucoma</topic><topic>Human trabecular meshwork cell</topic><topic>humans</topic><topic>hypertension</topic><topic>mechanical stress</topic><topic>NLRP3</topic><topic>pathogenesis</topic><topic>Pyroptosis</topic><topic>reactive oxygen species</topic><topic>rodents</topic><topic>ROS</topic><topic>therapeutics</topic><topic>viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Xiaomei</creatorcontrib><creatorcontrib>Chen, Zhao</creatorcontrib><creatorcontrib>Cheng, Wenjun</creatorcontrib><creatorcontrib>Liu, Changgeng</creatorcontrib><creatorcontrib>Liu, Qian</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Heliyon</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Xiaomei</au><au>Chen, Zhao</au><au>Cheng, Wenjun</au><au>Liu, Changgeng</au><au>Liu, Qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role for NLRP3 inflammasome-mediated, Caspase1-dependent response in glaucomatous trabecular meshwork cell death and regulation of aqueous humor outflow</atitle><jtitle>Heliyon</jtitle><addtitle>Heliyon</addtitle><date>2024-10-15</date><risdate>2024</risdate><volume>10</volume><issue>19</issue><spage>e38258</spage><pages>e38258-</pages><artnum>e38258</artnum><issn>2405-8440</issn><eissn>2405-8440</eissn><abstract>Acute ocular hypertension (AOH) is the defining feature of acute glaucoma. The mechanical stress and excessive production of reactive oxygen species (ROS) during episodes can directly or indirectly damage the trabecular meshwork (TM). Despite its significance, a clear understanding of its pathogenesis and an effective therapeutic target remain lacking in acute glaucoma. In the present study, we explored the potential molecular mechanisms underlying TM cell death following oxidative damage and AOH. The use of NAC/VX-765 as a potential pharmaceutical intervention for reducing intraocular pressure (IOP) was discussed. The levels of NLRP3 and caspase-1 were compared between normal and glaucomatous TM samples. An in vitro oxidative damage model and an AOH rat model were used to investigate the potential molecular mechanism behind TM cell death. The ROS scavenger N-acetyl-L-cysteine (NAC) and caspase-1 inhibitor VX-765 were used to counteract TM damage. Elevated levels of NLRP3 and caspase-1 were observed in patients with acute glaucoma. H2O2 exposure decreased the viability of human trabecular meshwork (HTM) cells and increased intracellular ROS levels. Both Gene and protein expressions of NLRP3, caspase-1, GSDMD-N, and IL-1β were notably upregulated in H2O2-induced HTM cells and the rodent AOH model. Both NAC and VX-765 demonstrated protective effects against TM injury by inhibiting pyroptosis. The IOP-lowering effects of NAC and VX-765 persisted for 7 days. Our findings indicate that the classical pyroptosis pathway, NLRP3/caspase-1/IL-1β, plays a key role in acute glaucomatous TM injury. Targeting pyroptosis provides novel therapeutic avenues for treating AOH-induced irreversible TM injury. This provides not only a promising therapeutic target for glaucoma but also introduces a new approach to intervention.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>39416828</pmid><doi>10.1016/j.heliyon.2024.e38258</doi><orcidid>https://orcid.org/0009-0006-6484-0000</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2405-8440
ispartof Heliyon, 2024-10, Vol.10 (19), p.e38258, Article e38258
issn 2405-8440
2405-8440
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11481635
source Elsevier ScienceDirect Journals; PubMed Central
subjects acetylcysteine
animal models
caspase-1
genes
Glaucoma
Human trabecular meshwork cell
humans
hypertension
mechanical stress
NLRP3
pathogenesis
Pyroptosis
reactive oxygen species
rodents
ROS
therapeutics
viability
title Role for NLRP3 inflammasome-mediated, Caspase1-dependent response in glaucomatous trabecular meshwork cell death and regulation of aqueous humor outflow
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A08%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20for%20NLRP3%20inflammasome-mediated,%20Caspase1-dependent%20response%20in%20glaucomatous%20trabecular%20meshwork%20cell%20death%20and%20regulation%20of%20aqueous%20humor%20outflow&rft.jtitle=Heliyon&rft.au=Feng,%20Xiaomei&rft.date=2024-10-15&rft.volume=10&rft.issue=19&rft.spage=e38258&rft.pages=e38258-&rft.artnum=e38258&rft.issn=2405-8440&rft.eissn=2405-8440&rft_id=info:doi/10.1016/j.heliyon.2024.e38258&rft_dat=%3Cproquest_pubme%3E3117619167%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2948-c9ae99ad533f18f11e7068e9fdf832fa3d9dfb724bfa94de0287ad0242b591b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3117619167&rft_id=info:pmid/39416828&rfr_iscdi=true