Loading…
Air pollution mixture complexity and its effect on PM2.5-related mortality: A multicountry time-series study in 264 cities
Fine particulate matter (PM2.5) occurs within a mixture of other pollutant gases that interact and impact its composition and toxicity. To characterize the local toxicity of PM2.5, it is useful to have an index that accounts for the whole pollutant mix, including gaseous pollutants. We consider a re...
Saved in:
Published in: | Environmental epidemiology 2024-12, Vol.8 (6), p.e342 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fine particulate matter (PM2.5) occurs within a mixture of other pollutant gases that interact and impact its composition and toxicity. To characterize the local toxicity of PM2.5, it is useful to have an index that accounts for the whole pollutant mix, including gaseous pollutants. We consider a recently proposed pollutant mixture complexity index (PMCI) to evaluate to which extent it relates to PM2.5 toxicity.BackgroundFine particulate matter (PM2.5) occurs within a mixture of other pollutant gases that interact and impact its composition and toxicity. To characterize the local toxicity of PM2.5, it is useful to have an index that accounts for the whole pollutant mix, including gaseous pollutants. We consider a recently proposed pollutant mixture complexity index (PMCI) to evaluate to which extent it relates to PM2.5 toxicity.The PMCI is constructed as an index spanning seven different pollutants, relative to the PM2.5 levels. We consider a standard two-stage analysis using data from 264 cities in the Northern Hemisphere. The first stage estimates the city-specific relative risks between daily PM2.5 and all-cause mortality, which are then pooled into a second-stage meta-regression model with which we estimate the effect modification from the PMCI.MethodsThe PMCI is constructed as an index spanning seven different pollutants, relative to the PM2.5 levels. We consider a standard two-stage analysis using data from 264 cities in the Northern Hemisphere. The first stage estimates the city-specific relative risks between daily PM2.5 and all-cause mortality, which are then pooled into a second-stage meta-regression model with which we estimate the effect modification from the PMCI.We estimate a relative excess risk of 1.0042 (95% confidence interval: 1.0023, 1.0061) for an interquartile range increase (from 1.09 to 1.95) of the PMCI. The PMCI predicts a substantial part of within-country relative risk heterogeneity with much less between-country heterogeneity explained. The Akaike information criterion and Bayesian information criterion of the main model are lower than those of alternative meta-regression models considering the oxidative capacity of PM2.5 or its composition.ResultsWe estimate a relative excess risk of 1.0042 (95% confidence interval: 1.0023, 1.0061) for an interquartile range increase (from 1.09 to 1.95) of the PMCI. The PMCI predicts a substantial part of within-country relative risk heterogeneity with much less between-country heterogeneity e |
---|---|
ISSN: | 2474-7882 2474-7882 |
DOI: | 10.1097/EE9.0000000000000342 |