Loading…

Improving the Automated Diagnosis of Breast Cancer with Mesh Reconstruction of Ultrasound Images Incorporating 3D Mesh Features and a Graph Attention Network

This study proposes a novel approach for breast tumor classification from ultrasound images into benign and malignant by converting the region of interest (ROI) of a 2D ultrasound image into a 3D representation using the point-e system, allowing for in-depth analysis of underlying characteristics. I...

Full description

Saved in:
Bibliographic Details
Published in:Journal of digital imaging 2024-06, Vol.37 (3), p.1067-1085
Main Authors: Chowa, Sadia Sultana, Azam, Sami, Montaha, Sidratul, Bhuiyan, Md Rahad Islam, Jonkman, Mirjam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study proposes a novel approach for breast tumor classification from ultrasound images into benign and malignant by converting the region of interest (ROI) of a 2D ultrasound image into a 3D representation using the point-e system, allowing for in-depth analysis of underlying characteristics. Instead of relying solely on 2D imaging features, this method extracts 3D mesh features that describe tumor patterns more precisely. Ten informative and medically relevant mesh features are extracted and assessed with two feature selection techniques. Additionally, a feature pattern analysis has been conducted to determine the feature’s significance. A feature table with dimensions of 445 × 12 is generated and a graph is constructed, considering the rows as nodes and the relationships among the nodes as edges. The Spearman correlation coefficient method is employed to identify edges between the strongly connected nodes (with a correlation score greater than or equal to 0.7), resulting in a graph containing 56,054 edges and 445 nodes. A graph attention network (GAT) is proposed for the classification task and the model is optimized with an ablation study, resulting in the highest accuracy of 99.34%. The performance of the proposed model is compared with ten machine learning (ML) models and one-dimensional convolutional neural network where the test accuracy of these models ranges from 73 to 91%. Our novel 3D mesh-based approach, coupled with the GAT, yields promising performance for breast tumor classification, outperforming traditional models, and has the potential to reduce time and effort of radiologists providing a reliable diagnostic system.
ISSN:2948-2933
0897-1889
2948-2925
2948-2933
1618-727X
DOI:10.1007/s10278-024-00983-5