Loading…
Role of chloride-mediated inhibition in respiratory rhythmogenesis in an in vitro brainstem of tadpole, Rana catesbeiana
1. The isolated brainstem of larval Rana catesbeiana maintained in vitro generates neural bursts that correspond to the lung and gill ventilatory activity generated in the intact specimen. To investigate the role of chloride channel-dependent inhibitory mechanisms mediated by GABA(A) and/or glycine...
Saved in:
Published in: | The Journal of physiology 1996-04, Vol.492 (Pt 2), p.545-558 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | 1. The isolated brainstem of larval Rana catesbeiana maintained in vitro generates neural bursts that correspond to the lung
and gill ventilatory activity generated in the intact specimen. To investigate the role of chloride channel-dependent inhibitory
mechanisms mediated by GABA(A) and/or glycine receptors on fictive lung and gill ventilation, we superfused the isolated brainstems
with agonists, antagonists (bicuculline and/or strychnine) or a chloride-free solution while recording multi-unit activity
from the facial motor nucleus. 2. Superfusion with the agonists (GABA or glycine) produced differential effects on frequency,
amplitude and duration of the neural bursts related to lung and gill ventilation. At a GABA or glycine concentration of 1.0
mM, fictive gill bursts were abolished while fictive lung bursts persisted, albeit with reduced amplitude and frequency. 3.
At the lowest concentrations used (1.0-2.5 microM), the GABA(A) receptor antagonist bicuculline produced an increase in the
frequency of lung bursts. At higher concentrations (5.0-2.0 microM) bicuculline produced non-specific excitatory effects.
The glycine antagonist strychnine, at concentrations lower than 5.0 microM, caused a progressive decrease in the frequency
and amplitude of the gill bursts and eventually abolished the rhythmic activity. At higher concentrations (7.5 microM), non-specific
excitatory effects occurred. Superfusion with bicuculline (10 microM) and strychnine (5 microM) combined abolished the neural
output for gill ventilation but increased the frequency, amplitude and duration of lung bursts. 4. Superfusion with Cl(-)-free
solution also abolished the rhythmic neural bursts associated with gill ventilation, while it significantly increased the
amplitude (228 +/- 51%; P < 0.05) (mean +/- S.E.M.) and duration of the lung bursts (3.5 +/- 0.1 to 35.3 +/- 3.7 s; P < 0.05)
and improved the regularity of their occurrence. 5. We conclude that different neural systems generate rhythmic activity for
lung and gill ventilation. Chloride-mediated inhibition may be essential for generation of neural bursts associated with gill
ventilation. In contrast, the burst associated with lung ventilation can be generated in the absence of Cl(-)-mediated inhibition
although the latter plays a role in shaping the normal lung burst. |
---|---|
ISSN: | 0022-3751 1469-7793 |
DOI: | 10.1113/jphysiol.1996.sp021328 |