Loading…
Multiple Kernel Synthesis of Head CT Using a Task-Based Loss Function
In CT imaging of the head, multiple image series are routinely reconstructed with different kernels and slice thicknesses. Reviewing the redundant information is an inefficient process for radiologists. We address this issue with a convolutional neural network (CNN)-based technique, synthesiZed Impr...
Saved in:
Published in: | Journal of digital imaging 2024-04, Vol.37 (2), p.864-872 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c356t-8f3a4df6c4047e541e8678c943a64267bda53abc8fd3dd2b690e54f639ea0d353 |
container_end_page | 872 |
container_issue | 2 |
container_start_page | 864 |
container_title | Journal of digital imaging |
container_volume | 37 |
creator | Nelson, Brandon J. Gomez-Cardona, Daniel G. Thorne, Jamison E. Huber, Nathan R. Yu, Lifeng Leng, Shuai McCollough, Cynthia H. Missert, Andrew D. |
description | In CT imaging of the head, multiple image series are routinely reconstructed with different kernels and slice thicknesses. Reviewing the redundant information is an inefficient process for radiologists. We address this issue with a convolutional neural network (CNN)-based technique, synthesiZed Improved Resolution and Concurrent nOise reductioN (ZIRCON), that creates a single, thin, low-noise series that combines the favorable features from smooth and sharp head kernels. ZIRCON uses a CNN model with an autoencoder U-Net architecture that accepts two input channels (smooth- and sharp-kernel CT images) and combines their salient features to produce a single CT image. Image quality requirements are built into a task-based loss function with a smooth and sharp loss terms specific to anatomical regions. The model is trained using supervised learning with paired routine-dose clinical non-contrast head CT images as training targets and simulated low-dose (25%) images as training inputs. One hundred unique de-identified clinical exams were used for training, ten for validation, and ten for testing. Visual comparisons and contrast measurements of ZIRCON revealed that thinner slices and the smooth-kernel loss function improved gray-white matter contrast. Combined with lower noise, this increased visibility of small soft-tissue features that would be otherwise impaired by partial volume averaging or noise. Line profile analysis showed that ZIRCON images largely retained sharpness compared to the sharp-kernel input images. ZIRCON combined desirable image quality properties of both smooth and sharp input kernels into a single, thin, low-noise series suitable for both brain and skull imaging. |
doi_str_mv | 10.1007/s10278-023-00959-x |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11589061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2926076205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-8f3a4df6c4047e541e8678c943a64267bda53abc8fd3dd2b690e54f639ea0d353</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi0EolXpC3BAlrhwCYw9jmOfEKxaWrGIA9uz5Y0n25Sss9gJat8et1tK4cDJluabfzz-GHsp4K0AaN5lAbIxFUisAGxtq-sn7FBaZSppEZ8-uh-w45yvAABRIGp4zg7QoEJZy0N28mUepn43EP9MKdLAv93E6ZJyn_nY8TPygS9W_CL3ccM9X_n8vfroMwW-HHPmp3Nsp36ML9izzg-Zju_PI3ZxerJanFXLr5_OFx-WVYu1nirToVeh060C1VCtBBndmNYq9FpJ3ayDr9GvW9MFDEGutYVCdRoteQhY4xF7v8_dzesthZbilPzgdqnf-nTjRt-7vyuxv3Sb8acTojYWtCgJb-4T0vhjpjy5bZ9bGgYfaZyzk1ZqaLSE22Gv_0GvxjnFsp9DUEIbaYwplNxTbSo_kqh7eI0Ad2vK7U25YsrdmXLXpenV4z0eWn57KQDugVxKcUPpz-z_xP4Curmd4Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3041682888</pqid></control><display><type>article</type><title>Multiple Kernel Synthesis of Head CT Using a Task-Based Loss Function</title><source>PubMed (Medline)</source><source>Springer Nature</source><creator>Nelson, Brandon J. ; Gomez-Cardona, Daniel G. ; Thorne, Jamison E. ; Huber, Nathan R. ; Yu, Lifeng ; Leng, Shuai ; McCollough, Cynthia H. ; Missert, Andrew D.</creator><creatorcontrib>Nelson, Brandon J. ; Gomez-Cardona, Daniel G. ; Thorne, Jamison E. ; Huber, Nathan R. ; Yu, Lifeng ; Leng, Shuai ; McCollough, Cynthia H. ; Missert, Andrew D.</creatorcontrib><description>In CT imaging of the head, multiple image series are routinely reconstructed with different kernels and slice thicknesses. Reviewing the redundant information is an inefficient process for radiologists. We address this issue with a convolutional neural network (CNN)-based technique, synthesiZed Improved Resolution and Concurrent nOise reductioN (ZIRCON), that creates a single, thin, low-noise series that combines the favorable features from smooth and sharp head kernels. ZIRCON uses a CNN model with an autoencoder U-Net architecture that accepts two input channels (smooth- and sharp-kernel CT images) and combines their salient features to produce a single CT image. Image quality requirements are built into a task-based loss function with a smooth and sharp loss terms specific to anatomical regions. The model is trained using supervised learning with paired routine-dose clinical non-contrast head CT images as training targets and simulated low-dose (25%) images as training inputs. One hundred unique de-identified clinical exams were used for training, ten for validation, and ten for testing. Visual comparisons and contrast measurements of ZIRCON revealed that thinner slices and the smooth-kernel loss function improved gray-white matter contrast. Combined with lower noise, this increased visibility of small soft-tissue features that would be otherwise impaired by partial volume averaging or noise. Line profile analysis showed that ZIRCON images largely retained sharpness compared to the sharp-kernel input images. ZIRCON combined desirable image quality properties of both smooth and sharp input kernels into a single, thin, low-noise series suitable for both brain and skull imaging.</description><identifier>ISSN: 2948-2933</identifier><identifier>ISSN: 0897-1889</identifier><identifier>ISSN: 2948-2925</identifier><identifier>EISSN: 2948-2933</identifier><identifier>EISSN: 1618-727X</identifier><identifier>DOI: 10.1007/s10278-023-00959-x</identifier><identifier>PMID: 38343252</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Artificial neural networks ; Computed tomography ; Drug dosages ; Fractures ; Head ; Head injuries ; Image contrast ; Image quality ; Imaging ; Informatics ; Information overload ; Machine learning ; Medical imaging ; Medicine ; Medicine & Public Health ; Neural networks ; Neuroimaging ; Noise reduction ; Patients ; Quality management ; Radiology ; Review boards ; Substantia alba ; Supervised learning ; Training ; Trauma ; Zircon</subject><ispartof>Journal of digital imaging, 2024-04, Vol.37 (2), p.864-872</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c356t-8f3a4df6c4047e541e8678c943a64267bda53abc8fd3dd2b690e54f639ea0d353</cites><orcidid>0000-0002-2825-696X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11589061/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11589061/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38343252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nelson, Brandon J.</creatorcontrib><creatorcontrib>Gomez-Cardona, Daniel G.</creatorcontrib><creatorcontrib>Thorne, Jamison E.</creatorcontrib><creatorcontrib>Huber, Nathan R.</creatorcontrib><creatorcontrib>Yu, Lifeng</creatorcontrib><creatorcontrib>Leng, Shuai</creatorcontrib><creatorcontrib>McCollough, Cynthia H.</creatorcontrib><creatorcontrib>Missert, Andrew D.</creatorcontrib><title>Multiple Kernel Synthesis of Head CT Using a Task-Based Loss Function</title><title>Journal of digital imaging</title><addtitle>j Imaging. Inform. med</addtitle><addtitle>J Imaging Inform Med</addtitle><description>In CT imaging of the head, multiple image series are routinely reconstructed with different kernels and slice thicknesses. Reviewing the redundant information is an inefficient process for radiologists. We address this issue with a convolutional neural network (CNN)-based technique, synthesiZed Improved Resolution and Concurrent nOise reductioN (ZIRCON), that creates a single, thin, low-noise series that combines the favorable features from smooth and sharp head kernels. ZIRCON uses a CNN model with an autoencoder U-Net architecture that accepts two input channels (smooth- and sharp-kernel CT images) and combines their salient features to produce a single CT image. Image quality requirements are built into a task-based loss function with a smooth and sharp loss terms specific to anatomical regions. The model is trained using supervised learning with paired routine-dose clinical non-contrast head CT images as training targets and simulated low-dose (25%) images as training inputs. One hundred unique de-identified clinical exams were used for training, ten for validation, and ten for testing. Visual comparisons and contrast measurements of ZIRCON revealed that thinner slices and the smooth-kernel loss function improved gray-white matter contrast. Combined with lower noise, this increased visibility of small soft-tissue features that would be otherwise impaired by partial volume averaging or noise. Line profile analysis showed that ZIRCON images largely retained sharpness compared to the sharp-kernel input images. ZIRCON combined desirable image quality properties of both smooth and sharp input kernels into a single, thin, low-noise series suitable for both brain and skull imaging.</description><subject>Artificial neural networks</subject><subject>Computed tomography</subject><subject>Drug dosages</subject><subject>Fractures</subject><subject>Head</subject><subject>Head injuries</subject><subject>Image contrast</subject><subject>Image quality</subject><subject>Imaging</subject><subject>Informatics</subject><subject>Information overload</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Noise reduction</subject><subject>Patients</subject><subject>Quality management</subject><subject>Radiology</subject><subject>Review boards</subject><subject>Substantia alba</subject><subject>Supervised learning</subject><subject>Training</subject><subject>Trauma</subject><subject>Zircon</subject><issn>2948-2933</issn><issn>0897-1889</issn><issn>2948-2925</issn><issn>2948-2933</issn><issn>1618-727X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu1DAQhi0EolXpC3BAlrhwCYw9jmOfEKxaWrGIA9uz5Y0n25Sss9gJat8et1tK4cDJluabfzz-GHsp4K0AaN5lAbIxFUisAGxtq-sn7FBaZSppEZ8-uh-w45yvAABRIGp4zg7QoEJZy0N28mUepn43EP9MKdLAv93E6ZJyn_nY8TPygS9W_CL3ccM9X_n8vfroMwW-HHPmp3Nsp36ML9izzg-Zju_PI3ZxerJanFXLr5_OFx-WVYu1nirToVeh060C1VCtBBndmNYq9FpJ3ayDr9GvW9MFDEGutYVCdRoteQhY4xF7v8_dzesthZbilPzgdqnf-nTjRt-7vyuxv3Sb8acTojYWtCgJb-4T0vhjpjy5bZ9bGgYfaZyzk1ZqaLSE22Gv_0GvxjnFsp9DUEIbaYwplNxTbSo_kqh7eI0Ad2vK7U25YsrdmXLXpenV4z0eWn57KQDugVxKcUPpz-z_xP4Curmd4Q</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Nelson, Brandon J.</creator><creator>Gomez-Cardona, Daniel G.</creator><creator>Thorne, Jamison E.</creator><creator>Huber, Nathan R.</creator><creator>Yu, Lifeng</creator><creator>Leng, Shuai</creator><creator>McCollough, Cynthia H.</creator><creator>Missert, Andrew D.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2825-696X</orcidid></search><sort><creationdate>20240401</creationdate><title>Multiple Kernel Synthesis of Head CT Using a Task-Based Loss Function</title><author>Nelson, Brandon J. ; Gomez-Cardona, Daniel G. ; Thorne, Jamison E. ; Huber, Nathan R. ; Yu, Lifeng ; Leng, Shuai ; McCollough, Cynthia H. ; Missert, Andrew D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-8f3a4df6c4047e541e8678c943a64267bda53abc8fd3dd2b690e54f639ea0d353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Computed tomography</topic><topic>Drug dosages</topic><topic>Fractures</topic><topic>Head</topic><topic>Head injuries</topic><topic>Image contrast</topic><topic>Image quality</topic><topic>Imaging</topic><topic>Informatics</topic><topic>Information overload</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Noise reduction</topic><topic>Patients</topic><topic>Quality management</topic><topic>Radiology</topic><topic>Review boards</topic><topic>Substantia alba</topic><topic>Supervised learning</topic><topic>Training</topic><topic>Trauma</topic><topic>Zircon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nelson, Brandon J.</creatorcontrib><creatorcontrib>Gomez-Cardona, Daniel G.</creatorcontrib><creatorcontrib>Thorne, Jamison E.</creatorcontrib><creatorcontrib>Huber, Nathan R.</creatorcontrib><creatorcontrib>Yu, Lifeng</creatorcontrib><creatorcontrib>Leng, Shuai</creatorcontrib><creatorcontrib>McCollough, Cynthia H.</creatorcontrib><creatorcontrib>Missert, Andrew D.</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of digital imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nelson, Brandon J.</au><au>Gomez-Cardona, Daniel G.</au><au>Thorne, Jamison E.</au><au>Huber, Nathan R.</au><au>Yu, Lifeng</au><au>Leng, Shuai</au><au>McCollough, Cynthia H.</au><au>Missert, Andrew D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple Kernel Synthesis of Head CT Using a Task-Based Loss Function</atitle><jtitle>Journal of digital imaging</jtitle><stitle>j Imaging. Inform. med</stitle><addtitle>J Imaging Inform Med</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>37</volume><issue>2</issue><spage>864</spage><epage>872</epage><pages>864-872</pages><issn>2948-2933</issn><issn>0897-1889</issn><issn>2948-2925</issn><eissn>2948-2933</eissn><eissn>1618-727X</eissn><abstract>In CT imaging of the head, multiple image series are routinely reconstructed with different kernels and slice thicknesses. Reviewing the redundant information is an inefficient process for radiologists. We address this issue with a convolutional neural network (CNN)-based technique, synthesiZed Improved Resolution and Concurrent nOise reductioN (ZIRCON), that creates a single, thin, low-noise series that combines the favorable features from smooth and sharp head kernels. ZIRCON uses a CNN model with an autoencoder U-Net architecture that accepts two input channels (smooth- and sharp-kernel CT images) and combines their salient features to produce a single CT image. Image quality requirements are built into a task-based loss function with a smooth and sharp loss terms specific to anatomical regions. The model is trained using supervised learning with paired routine-dose clinical non-contrast head CT images as training targets and simulated low-dose (25%) images as training inputs. One hundred unique de-identified clinical exams were used for training, ten for validation, and ten for testing. Visual comparisons and contrast measurements of ZIRCON revealed that thinner slices and the smooth-kernel loss function improved gray-white matter contrast. Combined with lower noise, this increased visibility of small soft-tissue features that would be otherwise impaired by partial volume averaging or noise. Line profile analysis showed that ZIRCON images largely retained sharpness compared to the sharp-kernel input images. ZIRCON combined desirable image quality properties of both smooth and sharp input kernels into a single, thin, low-noise series suitable for both brain and skull imaging.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>38343252</pmid><doi>10.1007/s10278-023-00959-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2825-696X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2948-2933 |
ispartof | Journal of digital imaging, 2024-04, Vol.37 (2), p.864-872 |
issn | 2948-2933 0897-1889 2948-2925 2948-2933 1618-727X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11589061 |
source | PubMed (Medline); Springer Nature |
subjects | Artificial neural networks Computed tomography Drug dosages Fractures Head Head injuries Image contrast Image quality Imaging Informatics Information overload Machine learning Medical imaging Medicine Medicine & Public Health Neural networks Neuroimaging Noise reduction Patients Quality management Radiology Review boards Substantia alba Supervised learning Training Trauma Zircon |
title | Multiple Kernel Synthesis of Head CT Using a Task-Based Loss Function |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A54%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20Kernel%20Synthesis%20of%20Head%20CT%20Using%20a%20Task-Based%20Loss%20Function&rft.jtitle=Journal%20of%20digital%20imaging&rft.au=Nelson,%20Brandon%20J.&rft.date=2024-04-01&rft.volume=37&rft.issue=2&rft.spage=864&rft.epage=872&rft.pages=864-872&rft.issn=2948-2933&rft.eissn=2948-2933&rft_id=info:doi/10.1007/s10278-023-00959-x&rft_dat=%3Cproquest_pubme%3E2926076205%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-8f3a4df6c4047e541e8678c943a64267bda53abc8fd3dd2b690e54f639ea0d353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3041682888&rft_id=info:pmid/38343252&rfr_iscdi=true |