Loading…
MedYOLO: A Medical Image Object Detection Framework
Artificial intelligence-enhanced identification of organs, lesions, and other structures in medical imaging is typically done using convolutional neural networks (CNNs) designed to make voxel-accurate segmentations of the region of interest. However, the labels required to train these CNNs are time-...
Saved in:
Published in: | Journal of digital imaging 2024-12, Vol.37 (6), p.3208-3216 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Artificial intelligence-enhanced identification of organs, lesions, and other structures in medical imaging is typically done using convolutional neural networks (CNNs) designed to make voxel-accurate segmentations of the region of interest. However, the labels required to train these CNNs are time-consuming to generate and require attention from subject matter experts to ensure quality. For tasks where voxel-level precision is not required, object detection models offer a viable alternative that can reduce annotation effort. Despite this potential application, there are few options for general-purpose object detection frameworks available for 3-D medical imaging. We report on MedYOLO, a 3-D object detection framework using the one-shot detection method of the YOLO family of models and designed for use with medical imaging. We tested this model on four different datasets: BRaTS, LIDC, an abdominal organ Computed tomography (CT) dataset, and an ECG-gated heart CT dataset. We found our models achieve high performance on a diverse range of structures even without hyperparameter tuning, reaching mean average precision (mAP) at intersection over union (IoU) 0.5 of 0.861 on BRaTS, 0.715 on the abdominal CT dataset, and 0.995 on the heart CT dataset. However, the models struggle with some structures, failing to converge on LIDC resulting in a mAP@0.5 of 0.0. |
---|---|
ISSN: | 0897-1889 2948-2933 2948-2925 2948-2933 1618-727X |
DOI: | 10.1007/s10278-024-01138-2 |