Loading…
Evolutionary history of an island endemic, the Azorean common quail
Oceanic islands are characterized by conditions that favour diversification into endemic lineages that can be very different from their mainland counterparts. This can be the result of fast phenotypic divergence due to drift or the result of slower adaptation to local conditions. This uniqueness can...
Saved in:
Published in: | Molecular ecology 2023-05, Vol.33 (24), p.e16997-n/a |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Oceanic islands are characterized by conditions that favour diversification into endemic lineages that can be very different from their mainland counterparts. This can be the result of fast phenotypic divergence due to drift or the result of slower adaptation to local conditions. This uniqueness can obscure their evolutionary history. Here we used morphological, stable isotope, genetic and genomic data to characterize common quails (Coturnix coturnix) in the Azores archipelago and assess the divergence from neighbouring common quail populations. Historical documents suggested that these quails could have a recent origin associated with the arrival of humans in the last centuries. Our results show that Azorean quails constitute a well‐differentiated lineage with small size and dark throat pigmentation that has lost the migratory ability and that diverged from mainland quail lineages more than 0.8 mya, contrary to the notion of a recent human‐mediated arrival. Even though some Azorean quails carry an inversion that affects 115 Mbp of chromosome 1 and that has been associated with the loss of the migratory behaviour in other common quail populations, half of the analysed individuals do not have that inversion and still do not migrate. The long coexistence and evolution in isolation in the Azores of two chromosomal variants (with and without the inversion) is best explained by balancing selection. Thus, a unique and long evolutionary history led to the island endemic that we know today, C. c. conturbans. |
---|---|
ISSN: | 0962-1083 1365-294X |
DOI: | 10.1111/mec.16997 |