Loading…

Uptake and release of glutamate in cerebral-cortex slices from the rat

1. Cerebral-cortex slices from rat brain, loaded with labelled l-glutamate as a result of aerobic incubation with labelled glucose, lost less than 15% of this glutamate on subsequent incubation in the presence of unlabelled glucose and l-glutamate. This indicates that very little exchange occurs bet...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical journal 1972-08, Vol.128 (5), p.1117-1124
Main Authors: Okamoto, K, Quastel, J H
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:1. Cerebral-cortex slices from rat brain, loaded with labelled l-glutamate as a result of aerobic incubation with labelled glucose, lost less than 15% of this glutamate on subsequent incubation in the presence of unlabelled glucose and l-glutamate. This indicates that very little exchange occurs between extracellular l-glutamate and glutamate accumulated in the neurons as a result of glucose metabolism. 2. Slices, loaded with labelled l-glutamate as a result of aerobic incubation in a medium containing unlabelled glucose and labelled l-glutamate, lost more than half of this glutamate on subsequent incubation in the presence of unlabelled l-glutamate. This indicates that exchange occurs between extracellular glutamate and glutamate accumulated in brain slices as a result of its uptake from the incubation medium. 3. Evidence was obtained suggesting that only a part of the glutamate, accumulated in brain slices as a result of its uptake from an incubation medium containing both glucose and l-glutamate, entered the neurons; apparently almost all the rest entered the glia. 4. It is concluded that the slices contain a pool of glutamate, derived from glucose and located in the neurons, which is poorly exchangeable with extracellular glutamate, and another pool of glutamate, derived from extracellular glutamate and located in the glia, which is freely exchangeable with extracellular glutamate.
ISSN:0264-6021
0306-3283
1470-8728
DOI:10.1042/bj1281117