Loading…

HGS Promotes Tumor Growth, Whereas the Coiled-Coil Domain and Its Oligopeptide of HGS Suppress It

We previously isolated a cDNA clone for galactosylceramide expression factor 1, which is the rat homologue of hepatocyte-growth-factor-regulated tyrosine kinase substrate (HGS) and induces galactosylceramide expression and morphological changes in COS-7 cells, and reported that overexpression of HGS...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2025-01, Vol.26 (2), p.772
Main Authors: Ogura, Kiyoshi, Kawashima, Ikuo, Kasahara, Kohji
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We previously isolated a cDNA clone for galactosylceramide expression factor 1, which is the rat homologue of hepatocyte-growth-factor-regulated tyrosine kinase substrate (HGS) and induces galactosylceramide expression and morphological changes in COS-7 cells, and reported that overexpression of HGS induced morphological changes in canine kidney epithelial MDCK cells. HGS is a component of the endosomal sorting complexes required for transport machinery that mediates endosomal multivesicle body formation. In this study, the overexpression of HGS induced epithelial-mesenchymal transition and caused transformation in MDCK cells, whereas the overexpression of a coiled-coil domain of HGS inhibited induction of epithelial-mesenchymal transition by HGF stimulation. The overexpression of HGS in mouse melanoma B16 cells and human colorectal cancer COLO205 cells promoted cancer characteristic anchorage-independent cell growth ability and tumor growth, whereas the overexpression of the coiled-coil domain of HGS in these cells suppressed them. The oligopeptide OP12-462 constituting the coiled-coil domain suppressed the anchorage-independent cell growth ability and tumor growth of COLO205 cells. The coiled-coil domain of HGS and OP12-462 are novel tumor growth inhibitors that do not directly destroy cancer cells but rather inhibit only the anchorage-independent cell growth ability of cancer cells.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms26020772