Loading…
Finding groups in gene expression data
The vast potential of the genomic insight offered by microarray technologies has led to their widespread use since they were introduced a decade ago. Application areas include gene function discovery, disease diagnosis, and inferring regulatory networks. Microarray experiments enable large-scale, hi...
Saved in:
Published in: | BioMed research international 2005-06, Vol.2005 (2), p.215-225 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c470t-b46da84598d410be02569464bd796178850e023009426f48d11cd1387334fb803 |
---|---|
cites | |
container_end_page | 225 |
container_issue | 2 |
container_start_page | 215 |
container_title | BioMed research international |
container_volume | 2005 |
creator | Hand, David J Heard, Nicholas A |
description | The vast potential of the genomic insight offered by microarray technologies has led to their widespread use since they were introduced a decade ago. Application areas include gene function discovery, disease diagnosis, and inferring regulatory networks. Microarray experiments enable large-scale, high-throughput investigations of gene activity and have thus provided the data analyst with a distinctive, high-dimensional field of study. Many questions in this field relate to finding subgroups of data profiles which are very similar. A popular type of exploratory tool for finding subgroups is cluster analysis, and many different flavors of algorithms have been used and indeed tailored for microarray data. Cluster analysis, however, implies a partitioning of the entire data set, and this does not always match the objective. Sometimes pattern discovery or bump hunting tools are more appropriate. This paper reviews these various tools for finding interesting subgroups. |
doi_str_mv | 10.1155/jbb.2005.215 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1184051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A151047621</galeid><sourcerecordid>A151047621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-b46da84598d410be02569464bd796178850e023009426f48d11cd1387334fb803</originalsourceid><addsrcrecordid>eNqFkctLw0AQhxdRbH3cPEtA6MnUmc3uZnMR2mJ9UPCi52WTbOKWdBOzqeh_b2qLj5OngZmP38zwEXKGMEbk_GqZpmMKwMcU-R4Z0ghZKJDhPhkiIoQxZdGAHHm_BMBYiuSQDFAAE5LGQzKaW5dbVwZlW68bH1gXlMaZwLw3rfHe1i7IdadPyEGhK29Od_WYPM9vnmZ34eLx9n42WYQZi6ELUyZyLRlPZM4QUgOUi4QJluZxIvrlkkPfiwASRkXBZI6Y5RjJOIpYkUqIjsn1NrdZpyuTZ8Z1ra5U09qVbj9Ura36O3H2RZX1m0KUDDj2AaNdQFu_ro3v1Mr6zFSVdqZeeyUkSJpg8i-IMUMhvxIvtmCpK6OsK-p-cbaB1QQ5AosF3VCXWypra-9bU3zfjKA2ntTDdKo2nlTvqcfPf__5A-_ERJ9xyopa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17416851</pqid></control><display><type>article</type><title>Finding groups in gene expression data</title><source>PubMed Central Free</source><source>IngentaConnect Journals</source><source>Wiley Open Access</source><creator>Hand, David J ; Heard, Nicholas A</creator><creatorcontrib>Hand, David J ; Heard, Nicholas A</creatorcontrib><description>The vast potential of the genomic insight offered by microarray technologies has led to their widespread use since they were introduced a decade ago. Application areas include gene function discovery, disease diagnosis, and inferring regulatory networks. Microarray experiments enable large-scale, high-throughput investigations of gene activity and have thus provided the data analyst with a distinctive, high-dimensional field of study. Many questions in this field relate to finding subgroups of data profiles which are very similar. A popular type of exploratory tool for finding subgroups is cluster analysis, and many different flavors of algorithms have been used and indeed tailored for microarray data. Cluster analysis, however, implies a partitioning of the entire data set, and this does not always match the objective. Sometimes pattern discovery or bump hunting tools are more appropriate. This paper reviews these various tools for finding interesting subgroups.</description><identifier>ISSN: 1110-7243</identifier><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/jbb.2005.215</identifier><identifier>PMID: 16046827</identifier><language>eng</language><publisher>United States: John Wiley & Sons, Inc</publisher><subject>Gene expression ; Genetic research ; Medical research ; Medicine, Experimental ; Methodology ; Methods ; Review</subject><ispartof>BioMed research international, 2005-06, Vol.2005 (2), p.215-225</ispartof><rights>COPYRIGHT 2005 John Wiley & Sons, Inc.</rights><rights>Hindawi Publishing Corporation 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-b46da84598d410be02569464bd796178850e023009426f48d11cd1387334fb803</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1184051/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1184051/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16046827$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hand, David J</creatorcontrib><creatorcontrib>Heard, Nicholas A</creatorcontrib><title>Finding groups in gene expression data</title><title>BioMed research international</title><addtitle>J Biomed Biotechnol</addtitle><description>The vast potential of the genomic insight offered by microarray technologies has led to their widespread use since they were introduced a decade ago. Application areas include gene function discovery, disease diagnosis, and inferring regulatory networks. Microarray experiments enable large-scale, high-throughput investigations of gene activity and have thus provided the data analyst with a distinctive, high-dimensional field of study. Many questions in this field relate to finding subgroups of data profiles which are very similar. A popular type of exploratory tool for finding subgroups is cluster analysis, and many different flavors of algorithms have been used and indeed tailored for microarray data. Cluster analysis, however, implies a partitioning of the entire data set, and this does not always match the objective. Sometimes pattern discovery or bump hunting tools are more appropriate. This paper reviews these various tools for finding interesting subgroups.</description><subject>Gene expression</subject><subject>Genetic research</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Methodology</subject><subject>Methods</subject><subject>Review</subject><issn>1110-7243</issn><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkctLw0AQhxdRbH3cPEtA6MnUmc3uZnMR2mJ9UPCi52WTbOKWdBOzqeh_b2qLj5OngZmP38zwEXKGMEbk_GqZpmMKwMcU-R4Z0ghZKJDhPhkiIoQxZdGAHHm_BMBYiuSQDFAAE5LGQzKaW5dbVwZlW68bH1gXlMaZwLw3rfHe1i7IdadPyEGhK29Od_WYPM9vnmZ34eLx9n42WYQZi6ELUyZyLRlPZM4QUgOUi4QJluZxIvrlkkPfiwASRkXBZI6Y5RjJOIpYkUqIjsn1NrdZpyuTZ8Z1ra5U09qVbj9Ura36O3H2RZX1m0KUDDj2AaNdQFu_ro3v1Mr6zFSVdqZeeyUkSJpg8i-IMUMhvxIvtmCpK6OsK-p-cbaB1QQ5AosF3VCXWypra-9bU3zfjKA2ntTDdKo2nlTvqcfPf__5A-_ERJ9xyopa</recordid><startdate>20050630</startdate><enddate>20050630</enddate><creator>Hand, David J</creator><creator>Heard, Nicholas A</creator><general>John Wiley & Sons, Inc</general><general>Hindawi Publishing Corporation</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20050630</creationdate><title>Finding groups in gene expression data</title><author>Hand, David J ; Heard, Nicholas A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-b46da84598d410be02569464bd796178850e023009426f48d11cd1387334fb803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Gene expression</topic><topic>Genetic research</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Methodology</topic><topic>Methods</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hand, David J</creatorcontrib><creatorcontrib>Heard, Nicholas A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hand, David J</au><au>Heard, Nicholas A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finding groups in gene expression data</atitle><jtitle>BioMed research international</jtitle><addtitle>J Biomed Biotechnol</addtitle><date>2005-06-30</date><risdate>2005</risdate><volume>2005</volume><issue>2</issue><spage>215</spage><epage>225</epage><pages>215-225</pages><issn>1110-7243</issn><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>The vast potential of the genomic insight offered by microarray technologies has led to their widespread use since they were introduced a decade ago. Application areas include gene function discovery, disease diagnosis, and inferring regulatory networks. Microarray experiments enable large-scale, high-throughput investigations of gene activity and have thus provided the data analyst with a distinctive, high-dimensional field of study. Many questions in this field relate to finding subgroups of data profiles which are very similar. A popular type of exploratory tool for finding subgroups is cluster analysis, and many different flavors of algorithms have been used and indeed tailored for microarray data. Cluster analysis, however, implies a partitioning of the entire data set, and this does not always match the objective. Sometimes pattern discovery or bump hunting tools are more appropriate. This paper reviews these various tools for finding interesting subgroups.</abstract><cop>United States</cop><pub>John Wiley & Sons, Inc</pub><pmid>16046827</pmid><doi>10.1155/jbb.2005.215</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1110-7243 |
ispartof | BioMed research international, 2005-06, Vol.2005 (2), p.215-225 |
issn | 1110-7243 2314-6133 2314-6141 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1184051 |
source | PubMed Central Free; IngentaConnect Journals; Wiley Open Access |
subjects | Gene expression Genetic research Medical research Medicine, Experimental Methodology Methods Review |
title | Finding groups in gene expression data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A20%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finding%20groups%20in%20gene%20expression%20data&rft.jtitle=BioMed%20research%20international&rft.au=Hand,%20David%20J&rft.date=2005-06-30&rft.volume=2005&rft.issue=2&rft.spage=215&rft.epage=225&rft.pages=215-225&rft.issn=1110-7243&rft.eissn=2314-6141&rft_id=info:doi/10.1155/jbb.2005.215&rft_dat=%3Cgale_pubme%3EA151047621%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-b46da84598d410be02569464bd796178850e023009426f48d11cd1387334fb803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17416851&rft_id=info:pmid/16046827&rft_galeid=A151047621&rfr_iscdi=true |