Loading…

Finding groups in gene expression data

The vast potential of the genomic insight offered by microarray technologies has led to their widespread use since they were introduced a decade ago. Application areas include gene function discovery, disease diagnosis, and inferring regulatory networks. Microarray experiments enable large-scale, hi...

Full description

Saved in:
Bibliographic Details
Published in:BioMed research international 2005-06, Vol.2005 (2), p.215-225
Main Authors: Hand, David J, Heard, Nicholas A
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c470t-b46da84598d410be02569464bd796178850e023009426f48d11cd1387334fb803
cites
container_end_page 225
container_issue 2
container_start_page 215
container_title BioMed research international
container_volume 2005
creator Hand, David J
Heard, Nicholas A
description The vast potential of the genomic insight offered by microarray technologies has led to their widespread use since they were introduced a decade ago. Application areas include gene function discovery, disease diagnosis, and inferring regulatory networks. Microarray experiments enable large-scale, high-throughput investigations of gene activity and have thus provided the data analyst with a distinctive, high-dimensional field of study. Many questions in this field relate to finding subgroups of data profiles which are very similar. A popular type of exploratory tool for finding subgroups is cluster analysis, and many different flavors of algorithms have been used and indeed tailored for microarray data. Cluster analysis, however, implies a partitioning of the entire data set, and this does not always match the objective. Sometimes pattern discovery or bump hunting tools are more appropriate. This paper reviews these various tools for finding interesting subgroups.
doi_str_mv 10.1155/jbb.2005.215
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1184051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A151047621</galeid><sourcerecordid>A151047621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-b46da84598d410be02569464bd796178850e023009426f48d11cd1387334fb803</originalsourceid><addsrcrecordid>eNqFkctLw0AQhxdRbH3cPEtA6MnUmc3uZnMR2mJ9UPCi52WTbOKWdBOzqeh_b2qLj5OngZmP38zwEXKGMEbk_GqZpmMKwMcU-R4Z0ghZKJDhPhkiIoQxZdGAHHm_BMBYiuSQDFAAE5LGQzKaW5dbVwZlW68bH1gXlMaZwLw3rfHe1i7IdadPyEGhK29Od_WYPM9vnmZ34eLx9n42WYQZi6ELUyZyLRlPZM4QUgOUi4QJluZxIvrlkkPfiwASRkXBZI6Y5RjJOIpYkUqIjsn1NrdZpyuTZ8Z1ra5U09qVbj9Ura36O3H2RZX1m0KUDDj2AaNdQFu_ro3v1Mr6zFSVdqZeeyUkSJpg8i-IMUMhvxIvtmCpK6OsK-p-cbaB1QQ5AosF3VCXWypra-9bU3zfjKA2ntTDdKo2nlTvqcfPf__5A-_ERJ9xyopa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17416851</pqid></control><display><type>article</type><title>Finding groups in gene expression data</title><source>PubMed Central Free</source><source>IngentaConnect Journals</source><source>Wiley Open Access</source><creator>Hand, David J ; Heard, Nicholas A</creator><creatorcontrib>Hand, David J ; Heard, Nicholas A</creatorcontrib><description>The vast potential of the genomic insight offered by microarray technologies has led to their widespread use since they were introduced a decade ago. Application areas include gene function discovery, disease diagnosis, and inferring regulatory networks. Microarray experiments enable large-scale, high-throughput investigations of gene activity and have thus provided the data analyst with a distinctive, high-dimensional field of study. Many questions in this field relate to finding subgroups of data profiles which are very similar. A popular type of exploratory tool for finding subgroups is cluster analysis, and many different flavors of algorithms have been used and indeed tailored for microarray data. Cluster analysis, however, implies a partitioning of the entire data set, and this does not always match the objective. Sometimes pattern discovery or bump hunting tools are more appropriate. This paper reviews these various tools for finding interesting subgroups.</description><identifier>ISSN: 1110-7243</identifier><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/jbb.2005.215</identifier><identifier>PMID: 16046827</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Inc</publisher><subject>Gene expression ; Genetic research ; Medical research ; Medicine, Experimental ; Methodology ; Methods ; Review</subject><ispartof>BioMed research international, 2005-06, Vol.2005 (2), p.215-225</ispartof><rights>COPYRIGHT 2005 John Wiley &amp; Sons, Inc.</rights><rights>Hindawi Publishing Corporation 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-b46da84598d410be02569464bd796178850e023009426f48d11cd1387334fb803</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1184051/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1184051/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16046827$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hand, David J</creatorcontrib><creatorcontrib>Heard, Nicholas A</creatorcontrib><title>Finding groups in gene expression data</title><title>BioMed research international</title><addtitle>J Biomed Biotechnol</addtitle><description>The vast potential of the genomic insight offered by microarray technologies has led to their widespread use since they were introduced a decade ago. Application areas include gene function discovery, disease diagnosis, and inferring regulatory networks. Microarray experiments enable large-scale, high-throughput investigations of gene activity and have thus provided the data analyst with a distinctive, high-dimensional field of study. Many questions in this field relate to finding subgroups of data profiles which are very similar. A popular type of exploratory tool for finding subgroups is cluster analysis, and many different flavors of algorithms have been used and indeed tailored for microarray data. Cluster analysis, however, implies a partitioning of the entire data set, and this does not always match the objective. Sometimes pattern discovery or bump hunting tools are more appropriate. This paper reviews these various tools for finding interesting subgroups.</description><subject>Gene expression</subject><subject>Genetic research</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Methodology</subject><subject>Methods</subject><subject>Review</subject><issn>1110-7243</issn><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkctLw0AQhxdRbH3cPEtA6MnUmc3uZnMR2mJ9UPCi52WTbOKWdBOzqeh_b2qLj5OngZmP38zwEXKGMEbk_GqZpmMKwMcU-R4Z0ghZKJDhPhkiIoQxZdGAHHm_BMBYiuSQDFAAE5LGQzKaW5dbVwZlW68bH1gXlMaZwLw3rfHe1i7IdadPyEGhK29Od_WYPM9vnmZ34eLx9n42WYQZi6ELUyZyLRlPZM4QUgOUi4QJluZxIvrlkkPfiwASRkXBZI6Y5RjJOIpYkUqIjsn1NrdZpyuTZ8Z1ra5U09qVbj9Ura36O3H2RZX1m0KUDDj2AaNdQFu_ro3v1Mr6zFSVdqZeeyUkSJpg8i-IMUMhvxIvtmCpK6OsK-p-cbaB1QQ5AosF3VCXWypra-9bU3zfjKA2ntTDdKo2nlTvqcfPf__5A-_ERJ9xyopa</recordid><startdate>20050630</startdate><enddate>20050630</enddate><creator>Hand, David J</creator><creator>Heard, Nicholas A</creator><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Publishing Corporation</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20050630</creationdate><title>Finding groups in gene expression data</title><author>Hand, David J ; Heard, Nicholas A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-b46da84598d410be02569464bd796178850e023009426f48d11cd1387334fb803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Gene expression</topic><topic>Genetic research</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Methodology</topic><topic>Methods</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hand, David J</creatorcontrib><creatorcontrib>Heard, Nicholas A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hand, David J</au><au>Heard, Nicholas A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finding groups in gene expression data</atitle><jtitle>BioMed research international</jtitle><addtitle>J Biomed Biotechnol</addtitle><date>2005-06-30</date><risdate>2005</risdate><volume>2005</volume><issue>2</issue><spage>215</spage><epage>225</epage><pages>215-225</pages><issn>1110-7243</issn><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>The vast potential of the genomic insight offered by microarray technologies has led to their widespread use since they were introduced a decade ago. Application areas include gene function discovery, disease diagnosis, and inferring regulatory networks. Microarray experiments enable large-scale, high-throughput investigations of gene activity and have thus provided the data analyst with a distinctive, high-dimensional field of study. Many questions in this field relate to finding subgroups of data profiles which are very similar. A popular type of exploratory tool for finding subgroups is cluster analysis, and many different flavors of algorithms have been used and indeed tailored for microarray data. Cluster analysis, however, implies a partitioning of the entire data set, and this does not always match the objective. Sometimes pattern discovery or bump hunting tools are more appropriate. This paper reviews these various tools for finding interesting subgroups.</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>16046827</pmid><doi>10.1155/jbb.2005.215</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1110-7243
ispartof BioMed research international, 2005-06, Vol.2005 (2), p.215-225
issn 1110-7243
2314-6133
2314-6141
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1184051
source PubMed Central Free; IngentaConnect Journals; Wiley Open Access
subjects Gene expression
Genetic research
Medical research
Medicine, Experimental
Methodology
Methods
Review
title Finding groups in gene expression data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A20%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finding%20groups%20in%20gene%20expression%20data&rft.jtitle=BioMed%20research%20international&rft.au=Hand,%20David%20J&rft.date=2005-06-30&rft.volume=2005&rft.issue=2&rft.spage=215&rft.epage=225&rft.pages=215-225&rft.issn=1110-7243&rft.eissn=2314-6141&rft_id=info:doi/10.1155/jbb.2005.215&rft_dat=%3Cgale_pubme%3EA151047621%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-b46da84598d410be02569464bd796178850e023009426f48d11cd1387334fb803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17416851&rft_id=info:pmid/16046827&rft_galeid=A151047621&rfr_iscdi=true