Loading…

Physiological concentration of amino acids regulates insulin-like-growth-factor-binding protein 1 expression

Protein undernutrition is characterized by growth failure in young growing animals. Current evidence suggests that biosynthesis of insulin-like growth factor (IGF)-I and IGF-binding protein 1 (IGFBP-1) are key control points for nutritional regulation of growth. Here we examined the role of amino ac...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical journal 1998-08, Vol.334 ( Pt 1) (1), p.147-153
Main Authors: Jousse, C, Bruhat, A, Ferrara, M, Fafournoux, P
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Protein undernutrition is characterized by growth failure in young growing animals. Current evidence suggests that biosynthesis of insulin-like growth factor (IGF)-I and IGF-binding protein 1 (IGFBP-1) are key control points for nutritional regulation of growth. Here we examined the role of amino acid limitation in regulating the IGFBP-1 expression in the hepatic cell line. Our data show that leucine limitation strongly induces IGFBP-1 without affecting IGF-I and IGF-II expression in human HepG2 cells and in isolated rat hepatocytes. Depletion of arginine, cystine and all essential amino acids leads to induction of IGFBP-1 mRNA and protein expression in a dose-dependent manner. IGFBP-1 expression is significantly induced by leucine concentration in the range of that observed in the blood of rats fed a low-protein diet or in humans affected by kwashiorkor. Moreover, treatment of HepG2 cells with amino acids at a concentration reproducing the amino acid concentration found in portal blood of rats fed a low-protein diet leads to a significantly higher expression of IGFBP-1. These data represent the first demonstration that an amino acid limitation, as occurs during dietary protein deficiency, induces IGFBP-1 expression in hepatic cells. Therefore, amino acids by themselves can play, in concert with hormones, an important role in the control of gene expression.
ISSN:0264-6021
1470-8728
DOI:10.1042/bj3340147