Loading…

The Interaction of Borate Ions with Cytochrome c Surface Sites: A Molecular Dynamics Study

Ionic interactions of cytochrome c play an important role in the electron transfer process. Molecular dynamics simulations of the binding of borate ion, which serves as a model ion, at three different cytochrome c surface sites are performed. This work is motivated by previous NMR studies of cytochr...

Full description

Saved in:
Bibliographic Details
Published in:Biophysical journal 1998-11, Vol.75 (5), p.2461-2468
Main Authors: Taler, Galia, Navon, Gil, Becker, Oren M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ionic interactions of cytochrome c play an important role in the electron transfer process. Molecular dynamics simulations of the binding of borate ion, which serves as a model ion, at three different cytochrome c surface sites are performed. This work is motivated by previous NMR studies of cytochrome c in borate solution, which indicate the existence of two types of binding sites, a slow exchange site and a fast exchange site. These two types of binding behavior were observed in the dynamic simulations, offering a molecular interpretation of “loose” and “tight” binding. At the “loose” binding sites (near Lys 25/Lys 27 and Lys 55/Lys 73) the ion forms two to three hydrogen bonds to the nearest lysine residue. This binding is transient on the time scale of the simulation, demonstrating the feasibility of fast exchange. At the “tight” binding site (near Lys 13/Lys 86), on the other hand, the ion becomes integrated into the protein hydrogen bond network and remains there for the duration of the simulation (exemplifying slow exchange). Binding simulations of the ion at the “tight” site of H26Q mutant cytochrome c also showed integration of the ion into the protein's hydrogen bond network. However, this integration differs in details from the binding of the ion to the native protein, in agreement with previous NMR observations.
ISSN:0006-3495
1542-0086
DOI:10.1016/S0006-3495(98)77690-8