Loading…
Temperature dependence of the yield shear resultant and the plastic viscosity coefficient of erythrocyte membrane. Implications about molecular events during membrane failure
Structural failure of the erythrocyte membrane in shear deformation occurs when the maximum shear resultant (force/length) exceeds a critical value, the yield shear resultant. When the yield shear resultant is exceeded, the membrane flows with a rate of deformation characterized by the plastic visco...
Saved in:
Published in: | Biophysical journal 1982-09, Vol.39 (3), p.273-278 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Structural failure of the erythrocyte membrane in shear deformation occurs when the maximum shear resultant (force/length) exceeds a critical value, the yield shear resultant. When the yield shear resultant is exceeded, the membrane flows with a rate of deformation characterized by the plastic viscosity coefficient. The temperature dependence of the yield shear resultant and the plastic viscosity coefficient have been measured over the temperature range 10–40 degrees C. Over this range the yield shear resultant does not change significantly (+/- 15%), but the plastic viscosity coefficient changes exponentially from a value of 1.3 X 10(-2) surface poise (dyn s/cm) at 10 degrees C to a value of 6.2 X 10(-4) surface poise (SP) at 40 degrees C. The different temperature dependence of these two parameters is not surprising, inasmuch as they characterize different molecular events. The yield shear resultant depends on the number and strength of intermolecular connections within the membrane skeleton, whereas the plastic viscosity depends on the frictional interactions between molecular segments as they move past one another in the flowing surface. From the temperature dependence of the plastic viscosity, a temperature-viscosity coefficient, E, can be calculated: eta p = constant X exp(--E/RT). This quantity (E) is related to the probability that a molecular segment can "jump" to its next location in the flowing network. The temperature-viscosity coefficient for erythrocyte membrane above the elastic limit is calculated to be 18 kcal/mol, which is similar to coefficients for other polymeric materials. |
---|---|
ISSN: | 0006-3495 1542-0086 |
DOI: | 10.1016/S0006-3495(82)84517-7 |