Loading…

A Test Statistic to Detect Errors in Sib-Pair Relationships

Several authors have proposed algorithms to detect Mendelian errors in human genetic linkage data. Most currently available methods use likelihood-based methods on multiplex family data to identify typing or pedigree errors. These algorithms cannot be applied in many sib-pair collections, because of...

Full description

Saved in:
Bibliographic Details
Published in:American journal of human genetics 1998-01, Vol.62 (1), p.181-188
Main Authors: Ehm, Margaret Gelder, Wagner, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c526t-e93252f6b2e1dc2e2a012a3d8a4a843e8fca02da4322f82a213f7bb96f5965a23
cites cdi_FETCH-LOGICAL-c526t-e93252f6b2e1dc2e2a012a3d8a4a843e8fca02da4322f82a213f7bb96f5965a23
container_end_page 188
container_issue 1
container_start_page 181
container_title American journal of human genetics
container_volume 62
creator Ehm, Margaret Gelder
Wagner, Michael
description Several authors have proposed algorithms to detect Mendelian errors in human genetic linkage data. Most currently available methods use likelihood-based methods on multiplex family data to identify typing or pedigree errors. These algorithms cannot be applied in many sib-pair collections, because of lack of parental-genotype information. Nonetheless, misspecifying the relationships between individuals has serious consequences for sib-pair linkage studies: false relationships bias the statistics designed to identify linkage with disease phenotypes. To test the hypothesis that two individuals are sibs, we propose a test statistic based on the summation, over a large number of genetic markers, of the number of alleles shared identical by state by a pair of individuals, for each marker. The test statistic has an approximately normal distribution under the null hypothesis, and extreme negative values correspond to nonsib pairs. Power and significance studies show that the test statistic calculated by use of 50 unlinked markers has 96% power to detect half-sibs and has 100% power to detect unrelated individuals as not full-sib pairs, with a 5% false-positive rate. Furthermore, extreme positive values of the test statistic identify sibs as MZ twins.
doi_str_mv 10.1086/301668
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1376795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0002929707601359</els_id><sourcerecordid>79669603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-e93252f6b2e1dc2e2a012a3d8a4a843e8fca02da4322f82a213f7bb96f5965a23</originalsourceid><addsrcrecordid>eNpdkVtLxDAQhYMout7-gdAH8a2aS5M2CIJ4hwXF1ecwTaca6TZrkhX891Z2WS9P83A-zpk5Q8g-o8eMVupEUKZUtUZGTIoyV4rKdTKilPJcc11uke0Y3yhlrKJik2zqohCVYiNyep49YUzZJEFyMTmbJZ9dYkKbsqsQfIiZ67OJq_MHcCF7xG7gfB9f3Szuko0Wuoh7y7lDnq-vni5u8_H9zd3F-Ti3kquUoxZc8lbVHFljOXKgjINoKiigKgRWrQXKGygE523FgTPRlnWtVSu1ksDFDjlb-M7m9RQbi30K0JlZcFMIn8aDM3-V3r2aF_9hmChVqeVgcLQ0CP59Ppxrpi5a7Dro0c-jKbVSWlHxA9rgYwzYrkIYNd81m0XNA3jwe6UVtux10A-XOkQLXRugty6uMM6kFIUeMLrAcKjvw2Ew0TrsLTYuDB8wjXf_k78ArraTkQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>79669603</pqid></control><display><type>article</type><title>A Test Statistic to Detect Errors in Sib-Pair Relationships</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><source>PubMed Central Free</source><creator>Ehm, Margaret Gelder ; Wagner, Michael</creator><creatorcontrib>Ehm, Margaret Gelder ; Wagner, Michael</creatorcontrib><description>Several authors have proposed algorithms to detect Mendelian errors in human genetic linkage data. Most currently available methods use likelihood-based methods on multiplex family data to identify typing or pedigree errors. These algorithms cannot be applied in many sib-pair collections, because of lack of parental-genotype information. Nonetheless, misspecifying the relationships between individuals has serious consequences for sib-pair linkage studies: false relationships bias the statistics designed to identify linkage with disease phenotypes. To test the hypothesis that two individuals are sibs, we propose a test statistic based on the summation, over a large number of genetic markers, of the number of alleles shared identical by state by a pair of individuals, for each marker. The test statistic has an approximately normal distribution under the null hypothesis, and extreme negative values correspond to nonsib pairs. Power and significance studies show that the test statistic calculated by use of 50 unlinked markers has 96% power to detect half-sibs and has 100% power to detect unrelated individuals as not full-sib pairs, with a 5% false-positive rate. Furthermore, extreme positive values of the test statistic identify sibs as MZ twins.</description><identifier>ISSN: 0002-9297</identifier><identifier>EISSN: 1537-6605</identifier><identifier>DOI: 10.1086/301668</identifier><identifier>PMID: 9443861</identifier><identifier>CODEN: AJHGAG</identifier><language>eng</language><publisher>Chicago, IL: Elsevier Inc</publisher><subject>Algorithms ; Biological and medical sciences ; Female ; General aspects. Genetic counseling ; Genetic Diseases, Inborn - genetics ; Genetic Linkage ; Genetic linkage analysis ; Genetic Markers ; Genotype ; Humans ; Identity/identical by state ; Male ; Medical genetics ; Medical sciences ; Models, Statistical ; Nuclear Family ; Pedigree errors ; Probability ; Sibling pairs ; Statistical genetics</subject><ispartof>American journal of human genetics, 1998-01, Vol.62 (1), p.181-188</ispartof><rights>1998 The American Society of Human Genetics</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-e93252f6b2e1dc2e2a012a3d8a4a843e8fca02da4322f82a213f7bb96f5965a23</citedby><cites>FETCH-LOGICAL-c526t-e93252f6b2e1dc2e2a012a3d8a4a843e8fca02da4322f82a213f7bb96f5965a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1376795/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1376795/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,27923,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2155349$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9443861$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ehm, Margaret Gelder</creatorcontrib><creatorcontrib>Wagner, Michael</creatorcontrib><title>A Test Statistic to Detect Errors in Sib-Pair Relationships</title><title>American journal of human genetics</title><addtitle>Am J Hum Genet</addtitle><description>Several authors have proposed algorithms to detect Mendelian errors in human genetic linkage data. Most currently available methods use likelihood-based methods on multiplex family data to identify typing or pedigree errors. These algorithms cannot be applied in many sib-pair collections, because of lack of parental-genotype information. Nonetheless, misspecifying the relationships between individuals has serious consequences for sib-pair linkage studies: false relationships bias the statistics designed to identify linkage with disease phenotypes. To test the hypothesis that two individuals are sibs, we propose a test statistic based on the summation, over a large number of genetic markers, of the number of alleles shared identical by state by a pair of individuals, for each marker. The test statistic has an approximately normal distribution under the null hypothesis, and extreme negative values correspond to nonsib pairs. Power and significance studies show that the test statistic calculated by use of 50 unlinked markers has 96% power to detect half-sibs and has 100% power to detect unrelated individuals as not full-sib pairs, with a 5% false-positive rate. Furthermore, extreme positive values of the test statistic identify sibs as MZ twins.</description><subject>Algorithms</subject><subject>Biological and medical sciences</subject><subject>Female</subject><subject>General aspects. Genetic counseling</subject><subject>Genetic Diseases, Inborn - genetics</subject><subject>Genetic Linkage</subject><subject>Genetic linkage analysis</subject><subject>Genetic Markers</subject><subject>Genotype</subject><subject>Humans</subject><subject>Identity/identical by state</subject><subject>Male</subject><subject>Medical genetics</subject><subject>Medical sciences</subject><subject>Models, Statistical</subject><subject>Nuclear Family</subject><subject>Pedigree errors</subject><subject>Probability</subject><subject>Sibling pairs</subject><subject>Statistical genetics</subject><issn>0002-9297</issn><issn>1537-6605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNpdkVtLxDAQhYMout7-gdAH8a2aS5M2CIJ4hwXF1ecwTaca6TZrkhX891Z2WS9P83A-zpk5Q8g-o8eMVupEUKZUtUZGTIoyV4rKdTKilPJcc11uke0Y3yhlrKJik2zqohCVYiNyep49YUzZJEFyMTmbJZ9dYkKbsqsQfIiZ67OJq_MHcCF7xG7gfB9f3Szuko0Wuoh7y7lDnq-vni5u8_H9zd3F-Ti3kquUoxZc8lbVHFljOXKgjINoKiigKgRWrQXKGygE523FgTPRlnWtVSu1ksDFDjlb-M7m9RQbi30K0JlZcFMIn8aDM3-V3r2aF_9hmChVqeVgcLQ0CP59Ppxrpi5a7Dro0c-jKbVSWlHxA9rgYwzYrkIYNd81m0XNA3jwe6UVtux10A-XOkQLXRugty6uMM6kFIUeMLrAcKjvw2Ew0TrsLTYuDB8wjXf_k78ArraTkQ</recordid><startdate>199801</startdate><enddate>199801</enddate><creator>Ehm, Margaret Gelder</creator><creator>Wagner, Michael</creator><general>Elsevier Inc</general><general>University of Chicago Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>199801</creationdate><title>A Test Statistic to Detect Errors in Sib-Pair Relationships</title><author>Ehm, Margaret Gelder ; Wagner, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-e93252f6b2e1dc2e2a012a3d8a4a843e8fca02da4322f82a213f7bb96f5965a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Algorithms</topic><topic>Biological and medical sciences</topic><topic>Female</topic><topic>General aspects. Genetic counseling</topic><topic>Genetic Diseases, Inborn - genetics</topic><topic>Genetic Linkage</topic><topic>Genetic linkage analysis</topic><topic>Genetic Markers</topic><topic>Genotype</topic><topic>Humans</topic><topic>Identity/identical by state</topic><topic>Male</topic><topic>Medical genetics</topic><topic>Medical sciences</topic><topic>Models, Statistical</topic><topic>Nuclear Family</topic><topic>Pedigree errors</topic><topic>Probability</topic><topic>Sibling pairs</topic><topic>Statistical genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ehm, Margaret Gelder</creatorcontrib><creatorcontrib>Wagner, Michael</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of human genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ehm, Margaret Gelder</au><au>Wagner, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Test Statistic to Detect Errors in Sib-Pair Relationships</atitle><jtitle>American journal of human genetics</jtitle><addtitle>Am J Hum Genet</addtitle><date>1998-01</date><risdate>1998</risdate><volume>62</volume><issue>1</issue><spage>181</spage><epage>188</epage><pages>181-188</pages><issn>0002-9297</issn><eissn>1537-6605</eissn><coden>AJHGAG</coden><abstract>Several authors have proposed algorithms to detect Mendelian errors in human genetic linkage data. Most currently available methods use likelihood-based methods on multiplex family data to identify typing or pedigree errors. These algorithms cannot be applied in many sib-pair collections, because of lack of parental-genotype information. Nonetheless, misspecifying the relationships between individuals has serious consequences for sib-pair linkage studies: false relationships bias the statistics designed to identify linkage with disease phenotypes. To test the hypothesis that two individuals are sibs, we propose a test statistic based on the summation, over a large number of genetic markers, of the number of alleles shared identical by state by a pair of individuals, for each marker. The test statistic has an approximately normal distribution under the null hypothesis, and extreme negative values correspond to nonsib pairs. Power and significance studies show that the test statistic calculated by use of 50 unlinked markers has 96% power to detect half-sibs and has 100% power to detect unrelated individuals as not full-sib pairs, with a 5% false-positive rate. Furthermore, extreme positive values of the test statistic identify sibs as MZ twins.</abstract><cop>Chicago, IL</cop><pub>Elsevier Inc</pub><pmid>9443861</pmid><doi>10.1086/301668</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9297
ispartof American journal of human genetics, 1998-01, Vol.62 (1), p.181-188
issn 0002-9297
1537-6605
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1376795
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS; PubMed Central Free
subjects Algorithms
Biological and medical sciences
Female
General aspects. Genetic counseling
Genetic Diseases, Inborn - genetics
Genetic Linkage
Genetic linkage analysis
Genetic Markers
Genotype
Humans
Identity/identical by state
Male
Medical genetics
Medical sciences
Models, Statistical
Nuclear Family
Pedigree errors
Probability
Sibling pairs
Statistical genetics
title A Test Statistic to Detect Errors in Sib-Pair Relationships
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A51%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Test%20Statistic%20to%20Detect%20Errors%20in%20Sib-Pair%20Relationships&rft.jtitle=American%20journal%20of%20human%20genetics&rft.au=Ehm,%20Margaret%20Gelder&rft.date=1998-01&rft.volume=62&rft.issue=1&rft.spage=181&rft.epage=188&rft.pages=181-188&rft.issn=0002-9297&rft.eissn=1537-6605&rft.coden=AJHGAG&rft_id=info:doi/10.1086/301668&rft_dat=%3Cproquest_pubme%3E79669603%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c526t-e93252f6b2e1dc2e2a012a3d8a4a843e8fca02da4322f82a213f7bb96f5965a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=79669603&rft_id=info:pmid/9443861&rfr_iscdi=true