Loading…
A Test Statistic to Detect Errors in Sib-Pair Relationships
Several authors have proposed algorithms to detect Mendelian errors in human genetic linkage data. Most currently available methods use likelihood-based methods on multiplex family data to identify typing or pedigree errors. These algorithms cannot be applied in many sib-pair collections, because of...
Saved in:
Published in: | American journal of human genetics 1998-01, Vol.62 (1), p.181-188 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c526t-e93252f6b2e1dc2e2a012a3d8a4a843e8fca02da4322f82a213f7bb96f5965a23 |
---|---|
cites | cdi_FETCH-LOGICAL-c526t-e93252f6b2e1dc2e2a012a3d8a4a843e8fca02da4322f82a213f7bb96f5965a23 |
container_end_page | 188 |
container_issue | 1 |
container_start_page | 181 |
container_title | American journal of human genetics |
container_volume | 62 |
creator | Ehm, Margaret Gelder Wagner, Michael |
description | Several authors have proposed algorithms to detect Mendelian errors in human genetic linkage data. Most currently available methods use likelihood-based methods on multiplex family data to identify typing or pedigree errors. These algorithms cannot be applied in many sib-pair collections, because of lack of parental-genotype information. Nonetheless, misspecifying the relationships between individuals has serious consequences for sib-pair linkage studies: false relationships bias the statistics designed to identify linkage with disease phenotypes. To test the hypothesis that two individuals are sibs, we propose a test statistic based on the summation, over a large number of genetic markers, of the number of alleles shared identical by state by a pair of individuals, for each marker. The test statistic has an approximately normal distribution under the null hypothesis, and extreme negative values correspond to nonsib pairs. Power and significance studies show that the test statistic calculated by use of 50 unlinked markers has 96% power to detect half-sibs and has 100% power to detect unrelated individuals as not full-sib pairs, with a 5% false-positive rate. Furthermore, extreme positive values of the test statistic identify sibs as MZ twins. |
doi_str_mv | 10.1086/301668 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1376795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0002929707601359</els_id><sourcerecordid>79669603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-e93252f6b2e1dc2e2a012a3d8a4a843e8fca02da4322f82a213f7bb96f5965a23</originalsourceid><addsrcrecordid>eNpdkVtLxDAQhYMout7-gdAH8a2aS5M2CIJ4hwXF1ecwTaca6TZrkhX891Z2WS9P83A-zpk5Q8g-o8eMVupEUKZUtUZGTIoyV4rKdTKilPJcc11uke0Y3yhlrKJik2zqohCVYiNyep49YUzZJEFyMTmbJZ9dYkKbsqsQfIiZ67OJq_MHcCF7xG7gfB9f3Szuko0Wuoh7y7lDnq-vni5u8_H9zd3F-Ti3kquUoxZc8lbVHFljOXKgjINoKiigKgRWrQXKGygE523FgTPRlnWtVSu1ksDFDjlb-M7m9RQbi30K0JlZcFMIn8aDM3-V3r2aF_9hmChVqeVgcLQ0CP59Ppxrpi5a7Dro0c-jKbVSWlHxA9rgYwzYrkIYNd81m0XNA3jwe6UVtux10A-XOkQLXRugty6uMM6kFIUeMLrAcKjvw2Ew0TrsLTYuDB8wjXf_k78ArraTkQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>79669603</pqid></control><display><type>article</type><title>A Test Statistic to Detect Errors in Sib-Pair Relationships</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><source>PubMed Central Free</source><creator>Ehm, Margaret Gelder ; Wagner, Michael</creator><creatorcontrib>Ehm, Margaret Gelder ; Wagner, Michael</creatorcontrib><description>Several authors have proposed algorithms to detect Mendelian errors in human genetic linkage data. Most currently available methods use likelihood-based methods on multiplex family data to identify typing or pedigree errors. These algorithms cannot be applied in many sib-pair collections, because of lack of parental-genotype information. Nonetheless, misspecifying the relationships between individuals has serious consequences for sib-pair linkage studies: false relationships bias the statistics designed to identify linkage with disease phenotypes. To test the hypothesis that two individuals are sibs, we propose a test statistic based on the summation, over a large number of genetic markers, of the number of alleles shared identical by state by a pair of individuals, for each marker. The test statistic has an approximately normal distribution under the null hypothesis, and extreme negative values correspond to nonsib pairs. Power and significance studies show that the test statistic calculated by use of 50 unlinked markers has 96% power to detect half-sibs and has 100% power to detect unrelated individuals as not full-sib pairs, with a 5% false-positive rate. Furthermore, extreme positive values of the test statistic identify sibs as MZ twins.</description><identifier>ISSN: 0002-9297</identifier><identifier>EISSN: 1537-6605</identifier><identifier>DOI: 10.1086/301668</identifier><identifier>PMID: 9443861</identifier><identifier>CODEN: AJHGAG</identifier><language>eng</language><publisher>Chicago, IL: Elsevier Inc</publisher><subject>Algorithms ; Biological and medical sciences ; Female ; General aspects. Genetic counseling ; Genetic Diseases, Inborn - genetics ; Genetic Linkage ; Genetic linkage analysis ; Genetic Markers ; Genotype ; Humans ; Identity/identical by state ; Male ; Medical genetics ; Medical sciences ; Models, Statistical ; Nuclear Family ; Pedigree errors ; Probability ; Sibling pairs ; Statistical genetics</subject><ispartof>American journal of human genetics, 1998-01, Vol.62 (1), p.181-188</ispartof><rights>1998 The American Society of Human Genetics</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-e93252f6b2e1dc2e2a012a3d8a4a843e8fca02da4322f82a213f7bb96f5965a23</citedby><cites>FETCH-LOGICAL-c526t-e93252f6b2e1dc2e2a012a3d8a4a843e8fca02da4322f82a213f7bb96f5965a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1376795/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1376795/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,27923,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2155349$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9443861$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ehm, Margaret Gelder</creatorcontrib><creatorcontrib>Wagner, Michael</creatorcontrib><title>A Test Statistic to Detect Errors in Sib-Pair Relationships</title><title>American journal of human genetics</title><addtitle>Am J Hum Genet</addtitle><description>Several authors have proposed algorithms to detect Mendelian errors in human genetic linkage data. Most currently available methods use likelihood-based methods on multiplex family data to identify typing or pedigree errors. These algorithms cannot be applied in many sib-pair collections, because of lack of parental-genotype information. Nonetheless, misspecifying the relationships between individuals has serious consequences for sib-pair linkage studies: false relationships bias the statistics designed to identify linkage with disease phenotypes. To test the hypothesis that two individuals are sibs, we propose a test statistic based on the summation, over a large number of genetic markers, of the number of alleles shared identical by state by a pair of individuals, for each marker. The test statistic has an approximately normal distribution under the null hypothesis, and extreme negative values correspond to nonsib pairs. Power and significance studies show that the test statistic calculated by use of 50 unlinked markers has 96% power to detect half-sibs and has 100% power to detect unrelated individuals as not full-sib pairs, with a 5% false-positive rate. Furthermore, extreme positive values of the test statistic identify sibs as MZ twins.</description><subject>Algorithms</subject><subject>Biological and medical sciences</subject><subject>Female</subject><subject>General aspects. Genetic counseling</subject><subject>Genetic Diseases, Inborn - genetics</subject><subject>Genetic Linkage</subject><subject>Genetic linkage analysis</subject><subject>Genetic Markers</subject><subject>Genotype</subject><subject>Humans</subject><subject>Identity/identical by state</subject><subject>Male</subject><subject>Medical genetics</subject><subject>Medical sciences</subject><subject>Models, Statistical</subject><subject>Nuclear Family</subject><subject>Pedigree errors</subject><subject>Probability</subject><subject>Sibling pairs</subject><subject>Statistical genetics</subject><issn>0002-9297</issn><issn>1537-6605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNpdkVtLxDAQhYMout7-gdAH8a2aS5M2CIJ4hwXF1ecwTaca6TZrkhX891Z2WS9P83A-zpk5Q8g-o8eMVupEUKZUtUZGTIoyV4rKdTKilPJcc11uke0Y3yhlrKJik2zqohCVYiNyep49YUzZJEFyMTmbJZ9dYkKbsqsQfIiZ67OJq_MHcCF7xG7gfB9f3Szuko0Wuoh7y7lDnq-vni5u8_H9zd3F-Ti3kquUoxZc8lbVHFljOXKgjINoKiigKgRWrQXKGygE523FgTPRlnWtVSu1ksDFDjlb-M7m9RQbi30K0JlZcFMIn8aDM3-V3r2aF_9hmChVqeVgcLQ0CP59Ppxrpi5a7Dro0c-jKbVSWlHxA9rgYwzYrkIYNd81m0XNA3jwe6UVtux10A-XOkQLXRugty6uMM6kFIUeMLrAcKjvw2Ew0TrsLTYuDB8wjXf_k78ArraTkQ</recordid><startdate>199801</startdate><enddate>199801</enddate><creator>Ehm, Margaret Gelder</creator><creator>Wagner, Michael</creator><general>Elsevier Inc</general><general>University of Chicago Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>199801</creationdate><title>A Test Statistic to Detect Errors in Sib-Pair Relationships</title><author>Ehm, Margaret Gelder ; Wagner, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-e93252f6b2e1dc2e2a012a3d8a4a843e8fca02da4322f82a213f7bb96f5965a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Algorithms</topic><topic>Biological and medical sciences</topic><topic>Female</topic><topic>General aspects. Genetic counseling</topic><topic>Genetic Diseases, Inborn - genetics</topic><topic>Genetic Linkage</topic><topic>Genetic linkage analysis</topic><topic>Genetic Markers</topic><topic>Genotype</topic><topic>Humans</topic><topic>Identity/identical by state</topic><topic>Male</topic><topic>Medical genetics</topic><topic>Medical sciences</topic><topic>Models, Statistical</topic><topic>Nuclear Family</topic><topic>Pedigree errors</topic><topic>Probability</topic><topic>Sibling pairs</topic><topic>Statistical genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ehm, Margaret Gelder</creatorcontrib><creatorcontrib>Wagner, Michael</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of human genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ehm, Margaret Gelder</au><au>Wagner, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Test Statistic to Detect Errors in Sib-Pair Relationships</atitle><jtitle>American journal of human genetics</jtitle><addtitle>Am J Hum Genet</addtitle><date>1998-01</date><risdate>1998</risdate><volume>62</volume><issue>1</issue><spage>181</spage><epage>188</epage><pages>181-188</pages><issn>0002-9297</issn><eissn>1537-6605</eissn><coden>AJHGAG</coden><abstract>Several authors have proposed algorithms to detect Mendelian errors in human genetic linkage data. Most currently available methods use likelihood-based methods on multiplex family data to identify typing or pedigree errors. These algorithms cannot be applied in many sib-pair collections, because of lack of parental-genotype information. Nonetheless, misspecifying the relationships between individuals has serious consequences for sib-pair linkage studies: false relationships bias the statistics designed to identify linkage with disease phenotypes. To test the hypothesis that two individuals are sibs, we propose a test statistic based on the summation, over a large number of genetic markers, of the number of alleles shared identical by state by a pair of individuals, for each marker. The test statistic has an approximately normal distribution under the null hypothesis, and extreme negative values correspond to nonsib pairs. Power and significance studies show that the test statistic calculated by use of 50 unlinked markers has 96% power to detect half-sibs and has 100% power to detect unrelated individuals as not full-sib pairs, with a 5% false-positive rate. Furthermore, extreme positive values of the test statistic identify sibs as MZ twins.</abstract><cop>Chicago, IL</cop><pub>Elsevier Inc</pub><pmid>9443861</pmid><doi>10.1086/301668</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9297 |
ispartof | American journal of human genetics, 1998-01, Vol.62 (1), p.181-188 |
issn | 0002-9297 1537-6605 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1376795 |
source | BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS; PubMed Central Free |
subjects | Algorithms Biological and medical sciences Female General aspects. Genetic counseling Genetic Diseases, Inborn - genetics Genetic Linkage Genetic linkage analysis Genetic Markers Genotype Humans Identity/identical by state Male Medical genetics Medical sciences Models, Statistical Nuclear Family Pedigree errors Probability Sibling pairs Statistical genetics |
title | A Test Statistic to Detect Errors in Sib-Pair Relationships |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A51%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Test%20Statistic%20to%20Detect%20Errors%20in%20Sib-Pair%20Relationships&rft.jtitle=American%20journal%20of%20human%20genetics&rft.au=Ehm,%20Margaret%20Gelder&rft.date=1998-01&rft.volume=62&rft.issue=1&rft.spage=181&rft.epage=188&rft.pages=181-188&rft.issn=0002-9297&rft.eissn=1537-6605&rft.coden=AJHGAG&rft_id=info:doi/10.1086/301668&rft_dat=%3Cproquest_pubme%3E79669603%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c526t-e93252f6b2e1dc2e2a012a3d8a4a843e8fca02da4322f82a213f7bb96f5965a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=79669603&rft_id=info:pmid/9443861&rfr_iscdi=true |