Loading…
AtKUP1: an Arabidopsis gene encoding high-affinity potassium transport activity
Because plants grow under many different types of soil and environmental conditions, we investigated the hypothesis that multiple pathways for K+ uptake exist in plants. We have identified a new family of potassium transporters from Arabidopsis by searching for homologous sequences among the express...
Saved in:
Published in: | The Plant cell 1998-01, Vol.10 (1), p.51-62 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Because plants grow under many different types of soil and environmental conditions, we investigated the hypothesis that multiple pathways for K+ uptake exist in plants. We have identified a new family of potassium transporters from Arabidopsis by searching for homologous sequences among the expressed sequence tags of the GenBank database. The deduced amino acid sequences of AtKUP (for Arabidopsis thaliana K+ uptake transporter) cDNAs are highly homologous to the non-plant Kup and HAK1 potassium transporters from Escherichia coli and Schwanniomyces occidentalis, respectively. Interestingly, AtKUP1 and AtKUP2 are able to complement the potassium transport deficiency of an E. coli triple mutant. In addition, transgenic Arabidopsis suspension cells overexpressing AtKUP1 showed increased Rb+ uptake at micromolar concentrations with an apparent Km of approximately 22 micromolars, indicating that AtKUP1 encodes a high-affinity potassium uptake activity in vivo. A small, low-affinity Rb+ uptake component was also detected in AtKUP1-expressing cells. RNA gel blot analysis showed that the various members of the AtKUP family have distinct patterns of expression, with AtKUP3 transcript levels being strongly induced by K+ starvation. It is proposed that plants contain multiple potassium transporters for high-affinity uptake and that the AtKUP family may provide important components of high- and low-affinity K+ nutrition and uptake into various plant cell types |
---|---|
ISSN: | 1040-4651 1532-298X |
DOI: | 10.1105/tpc.10.1.51 |