Loading…
genetic variant at the fatty acid-binding protein aP2 locus reduces the risk for hypertriglyceridemia, type 2 diabetes, and cardiovascular disease
Obesity and the associated pathologies including dyslipidemia, insulin resistance, type 2 diabetes, and cardiovascular disease constitute a major threat to global human health. Yet, the genetic factors that differentially predispose individuals to this cluster of pathologies are unclear. The fatty a...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2006-05, Vol.103 (18), p.6970-6975 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Obesity and the associated pathologies including dyslipidemia, insulin resistance, type 2 diabetes, and cardiovascular disease constitute a major threat to global human health. Yet, the genetic factors that differentially predispose individuals to this cluster of pathologies are unclear. The fatty acid-binding protein aP2 is a cytoplasmic lipid chaperon expressed in adipocytes and macrophages. Mice with aP2 deficiency are partially resistant to obesity-induced insulin resistance and type 2 diabetes, have lower circulating triglycerides, and exhibit marked protection against atherosclerosis. Here, we demonstrate a functionally significant genetic variation at the aP2 locus in humans that results in decreased adipose tissue aP2 expression due to alteration of the CAAT box/enhancer-binding protein binding and reduced transcriptional activity of the aP2 promoter. In population genetic studies with 7,899 participants, individuals that carry this T-87C polymorphism had lower serum triglyceride levels and significantly reduced risk for coronary heart disease and type 2 diabetes compared with subjects homozygous for the WT allele. Taken together, our results indicate that reduction in aP2 activity in humans generate a metabolically favorable phenotype that is similar to aP2 deficiency in experimental models. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.0602178103 |