Loading…

Differential Response of Mouse Male Germ-Cell Stages to Radiation-Induced Specific-Locus and Dominant Mutations

In an attempt to provide a systematic assessment of the frequency and nature of mutations induced in successive stages of spermato- and spermiogenesis, X-irradiated male mice were re-mated at weekly intervals, and large samples of progeny, observed from birth onward, were scored and genetically test...

Full description

Saved in:
Bibliographic Details
Published in:Genetics (Austin) 1998-04, Vol.148 (4), p.1567-1578
Main Authors: Russell, W. L, Bangham, Jean W, Russell, Liane B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In an attempt to provide a systematic assessment of the frequency and nature of mutations induced in successive stages of spermato- and spermiogenesis, X-irradiated male mice were re-mated at weekly intervals, and large samples of progeny, observed from birth onward, were scored and genetically tested for recessive mutations at seven specific loci and for externally recognizable dominant mutations. Productivity findings provided a rough measure of induced dominant-lethal frequencies. A qualitative assessment of specific-locus mutations (which include deletions and other rearrangements) was made on the basis of homozygosity test results, as well as from information derived from more recent complementation studies and molecular analyses. Both recessive and dominant visibles revealed clear distinctions between spermatogonia and postspermatogonial stages. In addition, differences for both of these endpoints, as well as for presumed dominant lethals, were found among various postspermatogonial stages. It may be concluded that radiation produces its maximum rates of genetic damage in germ-cell stages ranging from midpachytene spermatocytes through early spermatids, a pattern unlike any of those that have been defined for chemicals; further, the frequency peaks for radiation are lower and broader. The difference between post-stem-cell stages overall and stem-cell spermatogonia was smaller than is generally found with chemicals, not only with respect to the frequency but also the nature of mutations.
ISSN:0016-6731
1943-2631
1943-2631
DOI:10.1093/genetics/148.4.1567