Loading…

Little or no repair of cyclobutyl pyrimidine dimers is observed in the organellar genomes of the young Arabidopsis seedling

A Southern-blot-based, site-specific assay for ultraviolet (UV)induced cyclobutyl pyrimidine dimers (CPDs), employing the CPD-specific enzyme T4 endonuclease V, was used to follow the repair of this lesion in particular DNA sequences in 5- to 6-d-old Arabidopsis thaliana seedlings. CPDs, measured as...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 1996-05, Vol.111 (1), p.19-25
Main Authors: Chen, J.J. (University of California, Davis, CA.), Jiang, C.Z, Britt, A.B
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A Southern-blot-based, site-specific assay for ultraviolet (UV)induced cyclobutyl pyrimidine dimers (CPDs), employing the CPD-specific enzyme T4 endonuclease V, was used to follow the repair of this lesion in particular DNA sequences in 5- to 6-d-old Arabidopsis thaliana seedlings. CPDs, measured as enzyme-sensitive sites, in nuclear sequences were removed rapidly in the light but were repaired slowly, if at all, in the dark. This result was identical to that obtained in prior analyses of CPDs in total cellular DNA. Assay of representative chloroplast and mitochondrial sequences in the same DNA preparations revealed that, in contrast to nuclear sequences, enzyme-sensitive sites are inefficiently eliminated in both the presence and absence of visible light. These observations suggest that Arabidopsis seedlings possess little or no capacity for the repair of CPDs in the organellar genomes. Given the fact that the UV dose employed only marginally affected the growth of the seedlings, we suggest that Arabidopsis seedlings must possess very efficient mechanism(s) for the tolerance of UV-induced DNA damage
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.111.1.19