Loading…

Competitive inhibition of abscisic acid-regulated gene expression by stereoisomeric acetylenic analogs of abscisic acid

The properties of two enantiomeric synthetic acetylenic abscisic acid (ABA) analogs (PBI-51 and PBI-63) in relation to ABA-sensitive gene expression are reported. Using microspore-derived embryos of Brassica napus as the biological material and their responsiveness to ABA in the expression of genes...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 1993-02, Vol.101 (2), p.469-476
Main Authors: Wilen, R.W, Hays, D.B, Mandel, R.M, Abrams, S.R, Moloney, M.M
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The properties of two enantiomeric synthetic acetylenic abscisic acid (ABA) analogs (PBI-51 and PBI-63) in relation to ABA-sensitive gene expression are reported. Using microspore-derived embryos of Brassica napus as the biological material and their responsiveness to ABA in the expression of genes encoding storage proteins as a quantitative bioassay, we measured the biological activity of PBI-51 and PBI-63. Assays to evaluate agonistic activity of either compound applied individually showed a dose-dependent increase in napin gene expression on application of PBI-63. Maximal activity of about 40 micromolar indicated that PBI-63 was an agonist, although somewhat weaker than ABA. PBI-63 has a similar stereochemistry to natural ABA at the junction of the ring and side chain. In contrast, PBI-51 showed no agonistic effects until applied at 40 to 50 micromolar. Even then, the response was fairly weak. PBI-51 has the opposite stereochemistry to natural ABA at the junction of the ring and side chain. When applied concurrently with ABA, PBI-63 and PBI-51 had distinctly different properties. PBI-63 (40 micromolar) and ABA (5 micromolar) combined gave results similar to the application of either compound separately with high levels of induction of napin expression. PBI-51 displayed a reversible antagonistic effect with ABA, shifting the typical ABA dose-response curve by a factor of 4 to 5. This antagonism was noted for the expression of two ABA-sensitive genes, napin and oleosin. To test whether this antagonism was at the level of ABA recognition or uptake, ABA uptake was monitored in the presence of PBI-51 or PBI-63. Neither compound decreased ABA uptake. Treatments with either PBI-51 or PBI-63 showed an effect on endogenous ABA pools by permitting increases of 5- to 7-fold. It is hypothesized that this increase occurs because of competition for ABA catabolic enzymes by both compounds. The fact that ABA pools did not decrease in the presence of PBI-51 suggests that PBI-51 m
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.101.2.469