Loading…
Pacemaker synchronization of electrically coupled rabbit sinoatrial node cells
The effects of intercellular coupling conductance on the activity of two electrically coupled isolated rabbit sinoatrial nodal cells were investigated. A computer-controlled version of the "coupling clamp" technique was used in which isolated sinoatrial nodal cells, not physically in conta...
Saved in:
Published in: | The Journal of general physiology 1998-01, Vol.111 (1), p.95-112 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The effects of intercellular coupling conductance on the activity of two electrically coupled isolated rabbit sinoatrial nodal cells were investigated. A computer-controlled version of the "coupling clamp" technique was used in which isolated sinoatrial nodal cells, not physically in contact with each other, were electrically coupled at various values of ohmic coupling conductance, mimicking the effects of mutual interaction by electrical coupling through gap junctional channels. We demonstrate the existence of four types of electrical behavior of coupled spontaneously active cells. As the coupling conductance is progressively increased, the cells exhibit: (a) independent pacemaking at low coupling conductances, (b) complex dynamics of activity with mutual interactions, (c) entrainment of action potential frequency at a 1:1 ratio with different action potential waveforms, and (d) entrainment of action potentials at the same frequency of activation and virtually identical action potential waveforms. The critical value of coupling conductance required for 1:1 frequency entrainment was |
---|---|
ISSN: | 0022-1295 1540-7748 |
DOI: | 10.1085/jgp.111.1.95 |