Loading…

Influence of added catalase on chromosome stability and neoplastic transformation of mouse cells in culture

The generation of hydrogen peroxide (H2O2) and the derivative free hydroxyl radical (. OH) in cultures of mouse cells grown in the presence of visible light and ambient oxygen was shown previously to be implicated in chromatid damage. Furthermore, chromosome alterations appear to be associated with...

Full description

Saved in:
Bibliographic Details
Published in:British journal of cancer 1985-10, Vol.52 (4), p.583-590
Main Authors: Jones, G M, Sanford, K K, Parshad, R, Gantt, R, Price, F M, Tarone, R E
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The generation of hydrogen peroxide (H2O2) and the derivative free hydroxyl radical (. OH) in cultures of mouse cells grown in the presence of visible light and ambient oxygen was shown previously to be implicated in chromatid damage. Furthermore, chromosome alterations appear to be associated with the spontaneous neoplastic transformation of mouse cells in culture. An attempt was made in this study to reduce the incidence of chromosomal aberrations and delay or prevent the onset of spontaneous neoplastic transformation of freshly isolated mouse cells, both fibroblasts and epidermal keratinocytes, by adding catalase to the culture medium, shielding the cultures from wavelengths less than 500 nm and providing a gas phase of 0-1% O2. These conditions significantly decreased the incidence of chromosomal aberrations in both cell types, and in fibroblasts prevented tumourigenicity in non-irradiated syngeneic mice, and increased latent periods for tumour development in X-irradiated mice. The epidermal keratinocytes were particularly resistant to spontaneous neoplastic transformation under all conditions tested. These observations on the protective effect of extracellular catalase suggest that H2O2, a normal metabolite, and/or the derivative .OH can directly or indirectly produce genetic damage and neoplastic transformation in mouse fibroblasts.
ISSN:0007-0920
1532-1827
DOI:10.1038/bjc.1985.230