Loading…

Drosophila melanogaster Scramblases modulate synaptic transmission

Scramblases are a family of single-pass plasma membrane proteins, identified by their purported ability to scramble phospholipids across the two layers of plasma membrane isolated from platelets and red blood cells. However, their true in vivo role has yet to be elucidated. We report the generation...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of cell biology 2006-04, Vol.173 (1), p.69-82
Main Authors: Acharya, Usha, Edwards, Michael Beth, Jorquera, Ramon A, Silva, Hugo, Nagashima, Kunio, Labarca, Pedro, Acharya, Jairaj K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Scramblases are a family of single-pass plasma membrane proteins, identified by their purported ability to scramble phospholipids across the two layers of plasma membrane isolated from platelets and red blood cells. However, their true in vivo role has yet to be elucidated. We report the generation and isolation of null mutants of two Scramblases identified in Drosophila melanogaster. We demonstrate that flies lacking either or both of these Scramblases are not compromised in vivo in processes requiring scrambling of phospholipids. Instead, we show that D. melanogaster lacking both Scramblases have more vesicles and display enhanced recruitment from a reserve pool of vesicles and increased neurotransmitter secretion at the larval neuromuscular synapses. These defects are corrected by the introduction of a genomic copy of the Scramb 1 gene. The lack of phenotypes related to failure of scrambling and the neurophysiological analysis lead us to propose that Scramblases play a modulatory role in the process of neurotransmission.
ISSN:0021-9525
1540-8140
DOI:10.1083/jcb.200506159