Loading…
In vivo Binding of Active Heat Shock Transcription Factor 1 to Human Chromosome 9 Heterochromatin during Stress
Activation of the mammalian heat shock transcription factor (HSF)1 by stress is a multistep process resulting in the transcription of heat shock genes. Coincident with these events is the rapid and reversible redistribution of HSF1 to discrete nuclear structures termed HSF1 granules, whose function...
Saved in:
Published in: | The Journal of cell biology 2002-03, Vol.156 (5), p.775-781 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c528t-327193e9035684a09532fcd531cbe84c787405152271cf6244cc741019a66deb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c528t-327193e9035684a09532fcd531cbe84c787405152271cf6244cc741019a66deb3 |
container_end_page | 781 |
container_issue | 5 |
container_start_page | 775 |
container_title | The Journal of cell biology |
container_volume | 156 |
creator | Jolly, Caroline Konecny, Lara Grady, Deborah L. Kutskova, Yulia A. Cotto, José J. Morimoto, Richard I. Claire Vourc'h |
description | Activation of the mammalian heat shock transcription factor (HSF)1 by stress is a multistep process resulting in the transcription of heat shock genes. Coincident with these events is the rapid and reversible redistribution of HSF1 to discrete nuclear structures termed HSF1 granules, whose function is still unknown. Key features are that the number of granules correlates with cell ploidy, suggesting the existence of a chromosomal target. Here we show that in humans, HSF1 granules localize to the 9q11-q12 heterochromatic region. Within this locus, HSF1 binds through direct DNA-protein interaction with a nucleosome-containing subclass of satellite III repeats. HSF1 granule formation only requires the DNA binding competence and the trimerization of the factor. This is the first example of a transcriptional activator that accumulates transiently and reversibly on a chromosome-specific heterochromatic locus. |
doi_str_mv | 10.1083/jcb.200109018 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2173303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1620917</jstor_id><sourcerecordid>1620917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-327193e9035684a09532fcd531cbe84c787405152271cf6244cc741019a66deb3</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhi0EomngyA0hi0NvW8Zfa-8FqY0oqVSJQ8vZcrzexiFrB9sbiX-Po0QtcOFkyfP4nRk_CL0jcElAsU8bu7qkAAQ6IOoFmhHBoVGEw0s0A6Ck6QQVZ-g85w0AcMnZa3RGiJKSCzFD8Tbgvd9HfO1D78MjjgO-ssXvHV46U_D9Otof-CGZkG3yu-JjwDfGlpgwwSXi5TSagBfrFMeY4-hwV98Vl6I9XJniA-6ndAi-L8nl_Aa9Gsw2u7enc46-33x5WCybu29fbxdXd40VVJWGUUk65jpgolXcQCcYHWwvGLErp7iVSnIQRNDK2aGlnFsrOQHSmbbt3YrN0edj7m5aja63LpRktnqX_GjSLx2N139Xgl_rx7jXlEjGgNWAi1NAij8nl4sefbZuuzXBxSlrSXjHiRD_BYliIJlqK_jxH3ATpxTqLxyaQidp7TtHzRGyKeac3PA0MgF9EK6rcP0kvPIf_tzzmT4ZrsD7I7DJVdpzvaXQ1VV_Ayi-rvA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217097230</pqid></control><display><type>article</type><title>In vivo Binding of Active Heat Shock Transcription Factor 1 to Human Chromosome 9 Heterochromatin during Stress</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Jolly, Caroline ; Konecny, Lara ; Grady, Deborah L. ; Kutskova, Yulia A. ; Cotto, José J. ; Morimoto, Richard I. ; Claire Vourc'h</creator><creatorcontrib>Jolly, Caroline ; Konecny, Lara ; Grady, Deborah L. ; Kutskova, Yulia A. ; Cotto, José J. ; Morimoto, Richard I. ; Claire Vourc'h</creatorcontrib><description>Activation of the mammalian heat shock transcription factor (HSF)1 by stress is a multistep process resulting in the transcription of heat shock genes. Coincident with these events is the rapid and reversible redistribution of HSF1 to discrete nuclear structures termed HSF1 granules, whose function is still unknown. Key features are that the number of granules correlates with cell ploidy, suggesting the existence of a chromosomal target. Here we show that in humans, HSF1 granules localize to the 9q11-q12 heterochromatic region. Within this locus, HSF1 binds through direct DNA-protein interaction with a nucleosome-containing subclass of satellite III repeats. HSF1 granule formation only requires the DNA binding competence and the trimerization of the factor. This is the first example of a transcriptional activator that accumulates transiently and reversibly on a chromosome-specific heterochromatic locus.</description><identifier>ISSN: 0021-9525</identifier><identifier>EISSN: 1540-8140</identifier><identifier>DOI: 10.1083/jcb.200109018</identifier><identifier>PMID: 11877455</identifier><identifier>CODEN: JCLBA3</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Antibodies ; Artificial satellites ; Binding Sites - genetics ; Cell Nucleus - genetics ; Cell Nucleus - metabolism ; Cells, Cultured ; Cellular biology ; chromosome 9 ; Chromosomes ; Chromosomes, Human, Pair 9 - genetics ; Cytoplasmic Granules - genetics ; Cytoplasmic Granules - metabolism ; Deoxyribonucleic acid ; DNA ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Female ; Fluorescent Antibody Technique ; Fluorescent antibody techniques ; Genes ; heat shock factor 1 ; Heat Shock Transcription Factors ; Heat-Shock Proteins - genetics ; Heat-Shock Proteins - metabolism ; HeLa cells ; Heterochromatin ; Heterochromatin - genetics ; HSF1 protein ; Humans ; Microsatellite Repeats - genetics ; Protein Structure, Tertiary - genetics ; Proteins ; Shock heating ; Space probes ; Stress, Physiological - genetics ; Stress, Physiological - metabolism ; Transcription Factors</subject><ispartof>The Journal of cell biology, 2002-03, Vol.156 (5), p.775-781</ispartof><rights>Copyright 2002 The Rockefeller University Press</rights><rights>Copyright Rockefeller University Press Mar 4, 2002</rights><rights>Copyright © 2002, The Rockefeller University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-327193e9035684a09532fcd531cbe84c787405152271cf6244cc741019a66deb3</citedby><cites>FETCH-LOGICAL-c528t-327193e9035684a09532fcd531cbe84c787405152271cf6244cc741019a66deb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1620917$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1620917$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,778,782,883,27907,27908,58221,58454</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11877455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jolly, Caroline</creatorcontrib><creatorcontrib>Konecny, Lara</creatorcontrib><creatorcontrib>Grady, Deborah L.</creatorcontrib><creatorcontrib>Kutskova, Yulia A.</creatorcontrib><creatorcontrib>Cotto, José J.</creatorcontrib><creatorcontrib>Morimoto, Richard I.</creatorcontrib><creatorcontrib>Claire Vourc'h</creatorcontrib><title>In vivo Binding of Active Heat Shock Transcription Factor 1 to Human Chromosome 9 Heterochromatin during Stress</title><title>The Journal of cell biology</title><addtitle>J Cell Biol</addtitle><description>Activation of the mammalian heat shock transcription factor (HSF)1 by stress is a multistep process resulting in the transcription of heat shock genes. Coincident with these events is the rapid and reversible redistribution of HSF1 to discrete nuclear structures termed HSF1 granules, whose function is still unknown. Key features are that the number of granules correlates with cell ploidy, suggesting the existence of a chromosomal target. Here we show that in humans, HSF1 granules localize to the 9q11-q12 heterochromatic region. Within this locus, HSF1 binds through direct DNA-protein interaction with a nucleosome-containing subclass of satellite III repeats. HSF1 granule formation only requires the DNA binding competence and the trimerization of the factor. This is the first example of a transcriptional activator that accumulates transiently and reversibly on a chromosome-specific heterochromatic locus.</description><subject>Antibodies</subject><subject>Artificial satellites</subject><subject>Binding Sites - genetics</subject><subject>Cell Nucleus - genetics</subject><subject>Cell Nucleus - metabolism</subject><subject>Cells, Cultured</subject><subject>Cellular biology</subject><subject>chromosome 9</subject><subject>Chromosomes</subject><subject>Chromosomes, Human, Pair 9 - genetics</subject><subject>Cytoplasmic Granules - genetics</subject><subject>Cytoplasmic Granules - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Female</subject><subject>Fluorescent Antibody Technique</subject><subject>Fluorescent antibody techniques</subject><subject>Genes</subject><subject>heat shock factor 1</subject><subject>Heat Shock Transcription Factors</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>HeLa cells</subject><subject>Heterochromatin</subject><subject>Heterochromatin - genetics</subject><subject>HSF1 protein</subject><subject>Humans</subject><subject>Microsatellite Repeats - genetics</subject><subject>Protein Structure, Tertiary - genetics</subject><subject>Proteins</subject><subject>Shock heating</subject><subject>Space probes</subject><subject>Stress, Physiological - genetics</subject><subject>Stress, Physiological - metabolism</subject><subject>Transcription Factors</subject><issn>0021-9525</issn><issn>1540-8140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkU1vEzEQhi0EomngyA0hi0NvW8Zfa-8FqY0oqVSJQ8vZcrzexiFrB9sbiX-Po0QtcOFkyfP4nRk_CL0jcElAsU8bu7qkAAQ6IOoFmhHBoVGEw0s0A6Ck6QQVZ-g85w0AcMnZa3RGiJKSCzFD8Tbgvd9HfO1D78MjjgO-ssXvHV46U_D9Otof-CGZkG3yu-JjwDfGlpgwwSXi5TSagBfrFMeY4-hwV98Vl6I9XJniA-6ndAi-L8nl_Aa9Gsw2u7enc46-33x5WCybu29fbxdXd40VVJWGUUk65jpgolXcQCcYHWwvGLErp7iVSnIQRNDK2aGlnFsrOQHSmbbt3YrN0edj7m5aja63LpRktnqX_GjSLx2N139Xgl_rx7jXlEjGgNWAi1NAij8nl4sefbZuuzXBxSlrSXjHiRD_BYliIJlqK_jxH3ATpxTqLxyaQidp7TtHzRGyKeac3PA0MgF9EK6rcP0kvPIf_tzzmT4ZrsD7I7DJVdpzvaXQ1VV_Ayi-rvA</recordid><startdate>20020304</startdate><enddate>20020304</enddate><creator>Jolly, Caroline</creator><creator>Konecny, Lara</creator><creator>Grady, Deborah L.</creator><creator>Kutskova, Yulia A.</creator><creator>Cotto, José J.</creator><creator>Morimoto, Richard I.</creator><creator>Claire Vourc'h</creator><general>Rockefeller University Press</general><general>The Rockefeller University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20020304</creationdate><title>In vivo Binding of Active Heat Shock Transcription Factor 1 to Human Chromosome 9 Heterochromatin during Stress</title><author>Jolly, Caroline ; Konecny, Lara ; Grady, Deborah L. ; Kutskova, Yulia A. ; Cotto, José J. ; Morimoto, Richard I. ; Claire Vourc'h</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-327193e9035684a09532fcd531cbe84c787405152271cf6244cc741019a66deb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Antibodies</topic><topic>Artificial satellites</topic><topic>Binding Sites - genetics</topic><topic>Cell Nucleus - genetics</topic><topic>Cell Nucleus - metabolism</topic><topic>Cells, Cultured</topic><topic>Cellular biology</topic><topic>chromosome 9</topic><topic>Chromosomes</topic><topic>Chromosomes, Human, Pair 9 - genetics</topic><topic>Cytoplasmic Granules - genetics</topic><topic>Cytoplasmic Granules - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Female</topic><topic>Fluorescent Antibody Technique</topic><topic>Fluorescent antibody techniques</topic><topic>Genes</topic><topic>heat shock factor 1</topic><topic>Heat Shock Transcription Factors</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>HeLa cells</topic><topic>Heterochromatin</topic><topic>Heterochromatin - genetics</topic><topic>HSF1 protein</topic><topic>Humans</topic><topic>Microsatellite Repeats - genetics</topic><topic>Protein Structure, Tertiary - genetics</topic><topic>Proteins</topic><topic>Shock heating</topic><topic>Space probes</topic><topic>Stress, Physiological - genetics</topic><topic>Stress, Physiological - metabolism</topic><topic>Transcription Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jolly, Caroline</creatorcontrib><creatorcontrib>Konecny, Lara</creatorcontrib><creatorcontrib>Grady, Deborah L.</creatorcontrib><creatorcontrib>Kutskova, Yulia A.</creatorcontrib><creatorcontrib>Cotto, José J.</creatorcontrib><creatorcontrib>Morimoto, Richard I.</creatorcontrib><creatorcontrib>Claire Vourc'h</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jolly, Caroline</au><au>Konecny, Lara</au><au>Grady, Deborah L.</au><au>Kutskova, Yulia A.</au><au>Cotto, José J.</au><au>Morimoto, Richard I.</au><au>Claire Vourc'h</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo Binding of Active Heat Shock Transcription Factor 1 to Human Chromosome 9 Heterochromatin during Stress</atitle><jtitle>The Journal of cell biology</jtitle><addtitle>J Cell Biol</addtitle><date>2002-03-04</date><risdate>2002</risdate><volume>156</volume><issue>5</issue><spage>775</spage><epage>781</epage><pages>775-781</pages><issn>0021-9525</issn><eissn>1540-8140</eissn><coden>JCLBA3</coden><abstract>Activation of the mammalian heat shock transcription factor (HSF)1 by stress is a multistep process resulting in the transcription of heat shock genes. Coincident with these events is the rapid and reversible redistribution of HSF1 to discrete nuclear structures termed HSF1 granules, whose function is still unknown. Key features are that the number of granules correlates with cell ploidy, suggesting the existence of a chromosomal target. Here we show that in humans, HSF1 granules localize to the 9q11-q12 heterochromatic region. Within this locus, HSF1 binds through direct DNA-protein interaction with a nucleosome-containing subclass of satellite III repeats. HSF1 granule formation only requires the DNA binding competence and the trimerization of the factor. This is the first example of a transcriptional activator that accumulates transiently and reversibly on a chromosome-specific heterochromatic locus.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>11877455</pmid><doi>10.1083/jcb.200109018</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9525 |
ispartof | The Journal of cell biology, 2002-03, Vol.156 (5), p.775-781 |
issn | 0021-9525 1540-8140 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2173303 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | Antibodies Artificial satellites Binding Sites - genetics Cell Nucleus - genetics Cell Nucleus - metabolism Cells, Cultured Cellular biology chromosome 9 Chromosomes Chromosomes, Human, Pair 9 - genetics Cytoplasmic Granules - genetics Cytoplasmic Granules - metabolism Deoxyribonucleic acid DNA DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Female Fluorescent Antibody Technique Fluorescent antibody techniques Genes heat shock factor 1 Heat Shock Transcription Factors Heat-Shock Proteins - genetics Heat-Shock Proteins - metabolism HeLa cells Heterochromatin Heterochromatin - genetics HSF1 protein Humans Microsatellite Repeats - genetics Protein Structure, Tertiary - genetics Proteins Shock heating Space probes Stress, Physiological - genetics Stress, Physiological - metabolism Transcription Factors |
title | In vivo Binding of Active Heat Shock Transcription Factor 1 to Human Chromosome 9 Heterochromatin during Stress |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A05%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20Binding%20of%20Active%20Heat%20Shock%20Transcription%20Factor%201%20to%20Human%20Chromosome%209%20Heterochromatin%20during%20Stress&rft.jtitle=The%20Journal%20of%20cell%20biology&rft.au=Jolly,%20Caroline&rft.date=2002-03-04&rft.volume=156&rft.issue=5&rft.spage=775&rft.epage=781&rft.pages=775-781&rft.issn=0021-9525&rft.eissn=1540-8140&rft.coden=JCLBA3&rft_id=info:doi/10.1083/jcb.200109018&rft_dat=%3Cjstor_pubme%3E1620917%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c528t-327193e9035684a09532fcd531cbe84c787405152271cf6244cc741019a66deb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=217097230&rft_id=info:pmid/11877455&rft_jstor_id=1620917&rfr_iscdi=true |