Loading…

In vivo Binding of Active Heat Shock Transcription Factor 1 to Human Chromosome 9 Heterochromatin during Stress

Activation of the mammalian heat shock transcription factor (HSF)1 by stress is a multistep process resulting in the transcription of heat shock genes. Coincident with these events is the rapid and reversible redistribution of HSF1 to discrete nuclear structures termed HSF1 granules, whose function...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of cell biology 2002-03, Vol.156 (5), p.775-781
Main Authors: Jolly, Caroline, Konecny, Lara, Grady, Deborah L., Kutskova, Yulia A., Cotto, José J., Morimoto, Richard I., Claire Vourc'h
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c528t-327193e9035684a09532fcd531cbe84c787405152271cf6244cc741019a66deb3
cites cdi_FETCH-LOGICAL-c528t-327193e9035684a09532fcd531cbe84c787405152271cf6244cc741019a66deb3
container_end_page 781
container_issue 5
container_start_page 775
container_title The Journal of cell biology
container_volume 156
creator Jolly, Caroline
Konecny, Lara
Grady, Deborah L.
Kutskova, Yulia A.
Cotto, José J.
Morimoto, Richard I.
Claire Vourc'h
description Activation of the mammalian heat shock transcription factor (HSF)1 by stress is a multistep process resulting in the transcription of heat shock genes. Coincident with these events is the rapid and reversible redistribution of HSF1 to discrete nuclear structures termed HSF1 granules, whose function is still unknown. Key features are that the number of granules correlates with cell ploidy, suggesting the existence of a chromosomal target. Here we show that in humans, HSF1 granules localize to the 9q11-q12 heterochromatic region. Within this locus, HSF1 binds through direct DNA-protein interaction with a nucleosome-containing subclass of satellite III repeats. HSF1 granule formation only requires the DNA binding competence and the trimerization of the factor. This is the first example of a transcriptional activator that accumulates transiently and reversibly on a chromosome-specific heterochromatic locus.
doi_str_mv 10.1083/jcb.200109018
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2173303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1620917</jstor_id><sourcerecordid>1620917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-327193e9035684a09532fcd531cbe84c787405152271cf6244cc741019a66deb3</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhi0EomngyA0hi0NvW8Zfa-8FqY0oqVSJQ8vZcrzexiFrB9sbiX-Po0QtcOFkyfP4nRk_CL0jcElAsU8bu7qkAAQ6IOoFmhHBoVGEw0s0A6Ck6QQVZ-g85w0AcMnZa3RGiJKSCzFD8Tbgvd9HfO1D78MjjgO-ssXvHV46U_D9Otof-CGZkG3yu-JjwDfGlpgwwSXi5TSagBfrFMeY4-hwV98Vl6I9XJniA-6ndAi-L8nl_Aa9Gsw2u7enc46-33x5WCybu29fbxdXd40VVJWGUUk65jpgolXcQCcYHWwvGLErp7iVSnIQRNDK2aGlnFsrOQHSmbbt3YrN0edj7m5aja63LpRktnqX_GjSLx2N139Xgl_rx7jXlEjGgNWAi1NAij8nl4sefbZuuzXBxSlrSXjHiRD_BYliIJlqK_jxH3ATpxTqLxyaQidp7TtHzRGyKeac3PA0MgF9EK6rcP0kvPIf_tzzmT4ZrsD7I7DJVdpzvaXQ1VV_Ayi-rvA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217097230</pqid></control><display><type>article</type><title>In vivo Binding of Active Heat Shock Transcription Factor 1 to Human Chromosome 9 Heterochromatin during Stress</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Jolly, Caroline ; Konecny, Lara ; Grady, Deborah L. ; Kutskova, Yulia A. ; Cotto, José J. ; Morimoto, Richard I. ; Claire Vourc'h</creator><creatorcontrib>Jolly, Caroline ; Konecny, Lara ; Grady, Deborah L. ; Kutskova, Yulia A. ; Cotto, José J. ; Morimoto, Richard I. ; Claire Vourc'h</creatorcontrib><description>Activation of the mammalian heat shock transcription factor (HSF)1 by stress is a multistep process resulting in the transcription of heat shock genes. Coincident with these events is the rapid and reversible redistribution of HSF1 to discrete nuclear structures termed HSF1 granules, whose function is still unknown. Key features are that the number of granules correlates with cell ploidy, suggesting the existence of a chromosomal target. Here we show that in humans, HSF1 granules localize to the 9q11-q12 heterochromatic region. Within this locus, HSF1 binds through direct DNA-protein interaction with a nucleosome-containing subclass of satellite III repeats. HSF1 granule formation only requires the DNA binding competence and the trimerization of the factor. This is the first example of a transcriptional activator that accumulates transiently and reversibly on a chromosome-specific heterochromatic locus.</description><identifier>ISSN: 0021-9525</identifier><identifier>EISSN: 1540-8140</identifier><identifier>DOI: 10.1083/jcb.200109018</identifier><identifier>PMID: 11877455</identifier><identifier>CODEN: JCLBA3</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Antibodies ; Artificial satellites ; Binding Sites - genetics ; Cell Nucleus - genetics ; Cell Nucleus - metabolism ; Cells, Cultured ; Cellular biology ; chromosome 9 ; Chromosomes ; Chromosomes, Human, Pair 9 - genetics ; Cytoplasmic Granules - genetics ; Cytoplasmic Granules - metabolism ; Deoxyribonucleic acid ; DNA ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Female ; Fluorescent Antibody Technique ; Fluorescent antibody techniques ; Genes ; heat shock factor 1 ; Heat Shock Transcription Factors ; Heat-Shock Proteins - genetics ; Heat-Shock Proteins - metabolism ; HeLa cells ; Heterochromatin ; Heterochromatin - genetics ; HSF1 protein ; Humans ; Microsatellite Repeats - genetics ; Protein Structure, Tertiary - genetics ; Proteins ; Shock heating ; Space probes ; Stress, Physiological - genetics ; Stress, Physiological - metabolism ; Transcription Factors</subject><ispartof>The Journal of cell biology, 2002-03, Vol.156 (5), p.775-781</ispartof><rights>Copyright 2002 The Rockefeller University Press</rights><rights>Copyright Rockefeller University Press Mar 4, 2002</rights><rights>Copyright © 2002, The Rockefeller University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-327193e9035684a09532fcd531cbe84c787405152271cf6244cc741019a66deb3</citedby><cites>FETCH-LOGICAL-c528t-327193e9035684a09532fcd531cbe84c787405152271cf6244cc741019a66deb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1620917$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1620917$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,778,782,883,27907,27908,58221,58454</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11877455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jolly, Caroline</creatorcontrib><creatorcontrib>Konecny, Lara</creatorcontrib><creatorcontrib>Grady, Deborah L.</creatorcontrib><creatorcontrib>Kutskova, Yulia A.</creatorcontrib><creatorcontrib>Cotto, José J.</creatorcontrib><creatorcontrib>Morimoto, Richard I.</creatorcontrib><creatorcontrib>Claire Vourc'h</creatorcontrib><title>In vivo Binding of Active Heat Shock Transcription Factor 1 to Human Chromosome 9 Heterochromatin during Stress</title><title>The Journal of cell biology</title><addtitle>J Cell Biol</addtitle><description>Activation of the mammalian heat shock transcription factor (HSF)1 by stress is a multistep process resulting in the transcription of heat shock genes. Coincident with these events is the rapid and reversible redistribution of HSF1 to discrete nuclear structures termed HSF1 granules, whose function is still unknown. Key features are that the number of granules correlates with cell ploidy, suggesting the existence of a chromosomal target. Here we show that in humans, HSF1 granules localize to the 9q11-q12 heterochromatic region. Within this locus, HSF1 binds through direct DNA-protein interaction with a nucleosome-containing subclass of satellite III repeats. HSF1 granule formation only requires the DNA binding competence and the trimerization of the factor. This is the first example of a transcriptional activator that accumulates transiently and reversibly on a chromosome-specific heterochromatic locus.</description><subject>Antibodies</subject><subject>Artificial satellites</subject><subject>Binding Sites - genetics</subject><subject>Cell Nucleus - genetics</subject><subject>Cell Nucleus - metabolism</subject><subject>Cells, Cultured</subject><subject>Cellular biology</subject><subject>chromosome 9</subject><subject>Chromosomes</subject><subject>Chromosomes, Human, Pair 9 - genetics</subject><subject>Cytoplasmic Granules - genetics</subject><subject>Cytoplasmic Granules - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Female</subject><subject>Fluorescent Antibody Technique</subject><subject>Fluorescent antibody techniques</subject><subject>Genes</subject><subject>heat shock factor 1</subject><subject>Heat Shock Transcription Factors</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>HeLa cells</subject><subject>Heterochromatin</subject><subject>Heterochromatin - genetics</subject><subject>HSF1 protein</subject><subject>Humans</subject><subject>Microsatellite Repeats - genetics</subject><subject>Protein Structure, Tertiary - genetics</subject><subject>Proteins</subject><subject>Shock heating</subject><subject>Space probes</subject><subject>Stress, Physiological - genetics</subject><subject>Stress, Physiological - metabolism</subject><subject>Transcription Factors</subject><issn>0021-9525</issn><issn>1540-8140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkU1vEzEQhi0EomngyA0hi0NvW8Zfa-8FqY0oqVSJQ8vZcrzexiFrB9sbiX-Po0QtcOFkyfP4nRk_CL0jcElAsU8bu7qkAAQ6IOoFmhHBoVGEw0s0A6Ck6QQVZ-g85w0AcMnZa3RGiJKSCzFD8Tbgvd9HfO1D78MjjgO-ssXvHV46U_D9Otof-CGZkG3yu-JjwDfGlpgwwSXi5TSagBfrFMeY4-hwV98Vl6I9XJniA-6ndAi-L8nl_Aa9Gsw2u7enc46-33x5WCybu29fbxdXd40VVJWGUUk65jpgolXcQCcYHWwvGLErp7iVSnIQRNDK2aGlnFsrOQHSmbbt3YrN0edj7m5aja63LpRktnqX_GjSLx2N139Xgl_rx7jXlEjGgNWAi1NAij8nl4sefbZuuzXBxSlrSXjHiRD_BYliIJlqK_jxH3ATpxTqLxyaQidp7TtHzRGyKeac3PA0MgF9EK6rcP0kvPIf_tzzmT4ZrsD7I7DJVdpzvaXQ1VV_Ayi-rvA</recordid><startdate>20020304</startdate><enddate>20020304</enddate><creator>Jolly, Caroline</creator><creator>Konecny, Lara</creator><creator>Grady, Deborah L.</creator><creator>Kutskova, Yulia A.</creator><creator>Cotto, José J.</creator><creator>Morimoto, Richard I.</creator><creator>Claire Vourc'h</creator><general>Rockefeller University Press</general><general>The Rockefeller University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20020304</creationdate><title>In vivo Binding of Active Heat Shock Transcription Factor 1 to Human Chromosome 9 Heterochromatin during Stress</title><author>Jolly, Caroline ; Konecny, Lara ; Grady, Deborah L. ; Kutskova, Yulia A. ; Cotto, José J. ; Morimoto, Richard I. ; Claire Vourc'h</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-327193e9035684a09532fcd531cbe84c787405152271cf6244cc741019a66deb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Antibodies</topic><topic>Artificial satellites</topic><topic>Binding Sites - genetics</topic><topic>Cell Nucleus - genetics</topic><topic>Cell Nucleus - metabolism</topic><topic>Cells, Cultured</topic><topic>Cellular biology</topic><topic>chromosome 9</topic><topic>Chromosomes</topic><topic>Chromosomes, Human, Pair 9 - genetics</topic><topic>Cytoplasmic Granules - genetics</topic><topic>Cytoplasmic Granules - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Female</topic><topic>Fluorescent Antibody Technique</topic><topic>Fluorescent antibody techniques</topic><topic>Genes</topic><topic>heat shock factor 1</topic><topic>Heat Shock Transcription Factors</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>HeLa cells</topic><topic>Heterochromatin</topic><topic>Heterochromatin - genetics</topic><topic>HSF1 protein</topic><topic>Humans</topic><topic>Microsatellite Repeats - genetics</topic><topic>Protein Structure, Tertiary - genetics</topic><topic>Proteins</topic><topic>Shock heating</topic><topic>Space probes</topic><topic>Stress, Physiological - genetics</topic><topic>Stress, Physiological - metabolism</topic><topic>Transcription Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jolly, Caroline</creatorcontrib><creatorcontrib>Konecny, Lara</creatorcontrib><creatorcontrib>Grady, Deborah L.</creatorcontrib><creatorcontrib>Kutskova, Yulia A.</creatorcontrib><creatorcontrib>Cotto, José J.</creatorcontrib><creatorcontrib>Morimoto, Richard I.</creatorcontrib><creatorcontrib>Claire Vourc'h</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jolly, Caroline</au><au>Konecny, Lara</au><au>Grady, Deborah L.</au><au>Kutskova, Yulia A.</au><au>Cotto, José J.</au><au>Morimoto, Richard I.</au><au>Claire Vourc'h</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo Binding of Active Heat Shock Transcription Factor 1 to Human Chromosome 9 Heterochromatin during Stress</atitle><jtitle>The Journal of cell biology</jtitle><addtitle>J Cell Biol</addtitle><date>2002-03-04</date><risdate>2002</risdate><volume>156</volume><issue>5</issue><spage>775</spage><epage>781</epage><pages>775-781</pages><issn>0021-9525</issn><eissn>1540-8140</eissn><coden>JCLBA3</coden><abstract>Activation of the mammalian heat shock transcription factor (HSF)1 by stress is a multistep process resulting in the transcription of heat shock genes. Coincident with these events is the rapid and reversible redistribution of HSF1 to discrete nuclear structures termed HSF1 granules, whose function is still unknown. Key features are that the number of granules correlates with cell ploidy, suggesting the existence of a chromosomal target. Here we show that in humans, HSF1 granules localize to the 9q11-q12 heterochromatic region. Within this locus, HSF1 binds through direct DNA-protein interaction with a nucleosome-containing subclass of satellite III repeats. HSF1 granule formation only requires the DNA binding competence and the trimerization of the factor. This is the first example of a transcriptional activator that accumulates transiently and reversibly on a chromosome-specific heterochromatic locus.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>11877455</pmid><doi>10.1083/jcb.200109018</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9525
ispartof The Journal of cell biology, 2002-03, Vol.156 (5), p.775-781
issn 0021-9525
1540-8140
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2173303
source JSTOR Archival Journals and Primary Sources Collection
subjects Antibodies
Artificial satellites
Binding Sites - genetics
Cell Nucleus - genetics
Cell Nucleus - metabolism
Cells, Cultured
Cellular biology
chromosome 9
Chromosomes
Chromosomes, Human, Pair 9 - genetics
Cytoplasmic Granules - genetics
Cytoplasmic Granules - metabolism
Deoxyribonucleic acid
DNA
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Female
Fluorescent Antibody Technique
Fluorescent antibody techniques
Genes
heat shock factor 1
Heat Shock Transcription Factors
Heat-Shock Proteins - genetics
Heat-Shock Proteins - metabolism
HeLa cells
Heterochromatin
Heterochromatin - genetics
HSF1 protein
Humans
Microsatellite Repeats - genetics
Protein Structure, Tertiary - genetics
Proteins
Shock heating
Space probes
Stress, Physiological - genetics
Stress, Physiological - metabolism
Transcription Factors
title In vivo Binding of Active Heat Shock Transcription Factor 1 to Human Chromosome 9 Heterochromatin during Stress
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A05%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20Binding%20of%20Active%20Heat%20Shock%20Transcription%20Factor%201%20to%20Human%20Chromosome%209%20Heterochromatin%20during%20Stress&rft.jtitle=The%20Journal%20of%20cell%20biology&rft.au=Jolly,%20Caroline&rft.date=2002-03-04&rft.volume=156&rft.issue=5&rft.spage=775&rft.epage=781&rft.pages=775-781&rft.issn=0021-9525&rft.eissn=1540-8140&rft.coden=JCLBA3&rft_id=info:doi/10.1083/jcb.200109018&rft_dat=%3Cjstor_pubme%3E1620917%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c528t-327193e9035684a09532fcd531cbe84c787405152271cf6244cc741019a66deb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=217097230&rft_id=info:pmid/11877455&rft_jstor_id=1620917&rfr_iscdi=true