Loading…

Inhibitory influence of the ipsilateral motor cortex on responses to stimulation of the human cortex and pyramidal tract

The ability of the primary motor cortex (M1) to modulate motor responses in ipsilateral hand muscles seems to be important for normal motor control and potentially also for recovery after brain lesions. It is not clear which pathways mediate this ipsilateral modulation. Transcallosal connections hav...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of physiology 1998-07, Vol.510 (1), p.249-259
Main Authors: Gerloff, Christian, Cohen, Leonardo G., Floeter, Mary Kay, Chen, Robert, Corwell, Brian, Hallett, Mark
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The ability of the primary motor cortex (M1) to modulate motor responses in ipsilateral hand muscles seems to be important for normal motor control and potentially also for recovery after brain lesions. It is not clear which pathways mediate this ipsilateral modulation. Transcallosal connections have been proposed, but are known to be sparse between cortical hand motor representations in primates. The present study was performed to determine whether descending ipsilateral modulation of motor responses might also be mediated below the cortical level in humans. A paired-pulse protocol was used, in which motor-evoked potentials (MEPs) were produced by cortical transcranial magnetic stimulation (cTMS) or by electrical stimulation of the pyramidal tract at the level of the pyramidal decussation (pdTES), in both preactivated and relaxed hand muscles. Paired stimuli were applied at various interstimulus intervals (ISIs) between 2 and 100 ms. The conditioning stimulus (CS) was always magnetic, and delivered to the M1 ipsilateral to the target hand, prior to the test stimulus (TS). The magnetic TS was delivered to the M1 contralateral to the target hand; the electrical TS was applied through electrodes placed over the mastoid process bilaterally. Further experiments included cortical electrical stimulation and H-reflexes. The MEP amplitudes were averaged separately for each ISI and the control condition (no CS), and expressed as a percentage of the unconditioned response. Conditioning stimulation of the ipsilateral M1 resulted in significant inhibition of magnetically evoked MEPs, and also of MEPs produced by pdTES. Inhibition occurred at ISIs between 6 and 50 ms, and was observed in preactivated and relaxed muscles. Higher CS intensities caused greater inhibition of both cTMS- and pdTES-evoked MEPs. While the conditioning effects on magnetically evoked muscle responses could be explained by a transcallosal mechanism, the effects on pdTES-evoked MEPs cannot, because they are elicited subcortically and are therefore not susceptible to inhibitory mechanisms transmitted at the cortico-cortical level. In conclusion, the present results provide novel evidence that the inhibitory influence of the human M1 on ipsilateral hand muscles is to a significant extent mediated below the cortical level, and not only through cortico-cortical transcallosal connections. They point to a concept of inhibitory interaction between the two primary motor cortices that is relayed at multipl
ISSN:0022-3751
1469-7793
DOI:10.1111/j.1469-7793.1998.249bz.x