Loading…

Developmental changes in plasma catecholamine concentrations during normoxia and acute hypoxia in the chick embryo

In the mammalian fetus, the cardiovascular responses to acute hypoxaemia include a redistribution of the cardiac output away from the periphery towards the adrenal, myocardial and cerebral circulations. A component of the peripheral vasoconstriction is mediated by increased release of catecholamines...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of physiology 2000-09, Vol.527 (3), p.593-599
Main Authors: Mulder, A. L. M., Golde, J. M. C. G., Goor, A. A. C., Giussani, D. A., Blanco, C. E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the mammalian fetus, the cardiovascular responses to acute hypoxaemia include a redistribution of the cardiac output away from the periphery towards the adrenal, myocardial and cerebral circulations. A component of the peripheral vasoconstriction is mediated by increased release of catecholamines into the fetal circulation during acute hypoxaemia. Previously, we have shown that the chick embryo also shows an increase in peripheral vascular resistance during acute hypoxaemia and that this response becomes progressively larger towards the end of the incubation period. However, the ontogeny of the catecholaminergic response to acute hypoxaemia has not been investigated in this species. Fertilised chicken eggs were studied on days 10, 13, 16 and 19 of incubation (hatching is at 21 days). At each stage of incubation, blood samples were obtained from the chorioallantoic artery of the chick embryos during normoxia and after 5 min of hypoxaemia for measurement of plasma concentrations of adrenaline and noradrenaline by HPLC. Basal plasma adrenaline and noradrenaline concentrations by the end of the incubation period were much higher in the chick embryo than values reported for mammalian fetuses during late gestation. During normoxia, basal plasma noradrenaline concentration remained unchanged during development but plasma adrenaline concentration showed a developmental increase from < 25.1 pmol l −1 at day 10 to 3 nmol l −1 at day 19 of incubation. Acute hypoxaemia caused an increase in plasma noradrenaline and adrenaline from day 13 and day 16 of incubation, respectively. In addition, the increase in plasma adrenaline and noradrenaline and in the ratio of plasma adrenaline to noradrenaline during acute hypoxaemia became progressively larger by the end of the incubation period. These data show an ontogenic increase in basal plasma catecholamines and in the catecholaminergic response to acute hypoxaemia in the chick embryo during the last third of the incubation period.
ISSN:0022-3751
1469-7793
DOI:10.1111/j.1469-7793.2000.00593.x