Loading…

Pulsatile control of the human masticatory muscles

Spectral analysis of jaw acceleration confirmed that the human mandible ‘trembles’ at a peak frequency around 6 Hz when held in its rest position and at other stationary jaw openings. The 6 Hz tremor increased during very slow movements of the mandible, but other lower-frequency peaks became pro...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of physiology 2003-03, Vol.547 (2), p.613-620
Main Authors: Jaberzadeh, Shapour, Brodin, Pål, Flavel, Stanley C., O'Dwyer, Nicholas J., Nordstrom, Michael A., Miles, Timothy S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Spectral analysis of jaw acceleration confirmed that the human mandible ‘trembles’ at a peak frequency around 6 Hz when held in its rest position and at other stationary jaw openings. The 6 Hz tremor increased during very slow movements of the mandible, but other lower-frequency peaks became prominent during more rapid jaw movements. These lower-frequency peaks are likely to be the result of asymmetries in the underlying, voluntarily produced, ‘saw-tooth’ movements. In comparison, finger tremor at rest and during slow voluntary movements had a mean peak frequency of about 8 Hz: this frequency did not change during rhythmical finger flexion and extension movements, but the power of the tremor increased non-linearly with the speed of the movement. The resting jaw tremor was weakly coherent with the activity of the masseter and digastric muscles at the tremor frequency in about half the subjects, but was more strongly coherent during voluntary movements in all subjects. The masseter activity was at least 150 deg out of phase with the digastric activity at the tremor frequency (and at all frequencies from 2.5–15 Hz). The alternating pattern of activity in antagonistic muscles at rest and during slow voluntary movements supports the idea that the masticatory system is subject to pulsatile control in a manner analogous to that seen in the finger.
ISSN:0022-3751
1469-7793
DOI:10.1113/jphysiol.2003.030221