Loading…

Frequent loss of heterozygosity at the DNA mismatch-repair loci hMLH1 and hMSH3 in sporadic breast cancer

Summary To study the involvement of DNA mismatch-repair genes in sporadic breast cancer, matched normal and tumoral DNA samples of 22 patients were analysed for genetic instability and loss of heterozygosity (LOH) with 42 microsatellites at or linked to hMLH1 (3p21), hMSH2 (2p16), hMSH3 (5q11–q13),...

Full description

Saved in:
Bibliographic Details
Published in:British journal of cancer 1999-03, Vol.79 (7), p.1012-1017
Main Authors: Benachenhou, N, Guiral, S, Gorska-Flipot, I, Labuda, D, Sinnett, D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary To study the involvement of DNA mismatch-repair genes in sporadic breast cancer, matched normal and tumoral DNA samples of 22 patients were analysed for genetic instability and loss of heterozygosity (LOH) with 42 microsatellites at or linked to hMLH1 (3p21), hMSH2 (2p16), hMSH3 (5q11–q13), hMSH6 (2p16), hPMS1 (2q32) and hPMS2 (7p22) loci. Chromosomal regions 3p21 and 5q11–q13 were found hemizygously deleted in 46% and 23% of patients respectively. Half of the patients deleted at hMLH1 were also deleted at hMSH3 . The shortest regions of overlapping (SRO) deletions were delimited by markers D3S1298 and D3S1266 at 3p21 and by D5S647 and D5S418 at 5q11–q13. Currently, the genes hMLH1 (3p21) and hMSH3 (5q11–q13) are the only known candidates located within these regions. The consequence of these allelic losses is still unclear because none of the breast cancers examined displayed microsatellite instability, a hallmark of mismatch-repair defect during replication error correction. We suggest that hMLH1 and hMSH3 could be involved in breast tumorigenesis through cellular functions other than replication error correction.
ISSN:0007-0920
1532-1827
DOI:10.1038/sj.bjc.6690162