Loading…

Osmolyte effects on helix formation in peptides and the stability of coiled‐coils

The ability of several naturally occurring substances known as osmolytes to induce helix formation in an alanine‐based peptide have been investigated. As predicted by the osmophobic effect hypothesis, the osmolytes studies here do induce helix formation. Trimethylamine‐N‐oxide (TMAO) is the best str...

Full description

Saved in:
Bibliographic Details
Published in:Protein science 2002-08, Vol.11 (8), p.2048-2051
Main Authors: Celinski, Scott A., Scholtz, J. Martin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The ability of several naturally occurring substances known as osmolytes to induce helix formation in an alanine‐based peptide have been investigated. As predicted by the osmophobic effect hypothesis, the osmolytes studies here do induce helix formation. Trimethylamine‐N‐oxide (TMAO) is the best structure‐inducing osmolytes investigated here, but it is not as effective in promoting helix formation as the common cosolvent trifluoroethanol (TFE). We also provide a semiquantitative study of the ability of TMAO to induce helix formation and urea, which acts as a helix (and protein) denaturant. We find that on a molar basis, these agents are exactly counteractive as structure inducing and unfolding agents. Finally, we extend the investigations to the effects of urea and TMAO on the stability of a dimeric coiled‐coil peptide and find identical results. Together these results support the tenets of the osmophobic hypothesis and highlight the importance of the polypeptide backbone in protein folding and stability.
ISSN:0961-8368
1469-896X
DOI:10.1110/ps.0211702